【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

)求橢圓的方程;

)點(diǎn)在圓上,且在第一象限,過的切線交橢圓于兩點(diǎn),問: 的周長(zhǎng)是否為定值?若是,求出定值;若不是,說明理由.

【答案】(1;(2)詳見解析

【解析】試題分析:(1)要求橢圓標(biāo)準(zhǔn)方程,就是要確定的值,題中焦點(diǎn)說明,點(diǎn)在橢圓上,把坐標(biāo)代入標(biāo)準(zhǔn)方程可得的一個(gè)方程,聯(lián)立后結(jié)合可解得;(2)定值問題,就是讓切線繞圓旋轉(zhuǎn),求出的周長(zhǎng),為此設(shè)直線的方程為,由它與圓相切可得的關(guān)系, ,下面來求周長(zhǎng),設(shè),把直線方程與橢圓方程聯(lián)立方程組,消元后得一元二次方程,可得,由弦長(zhǎng)公式得弦長(zhǎng),再求得(這也可由焦半徑公式可得),再求周長(zhǎng),可得定值.

試題解析:(1)由題意得

所以橢圓方程為

2)由題意,設(shè)的方程為

與圓相切, ,即

設(shè),則

,同理

(定值)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項(xiàng)都是1的兩個(gè)數(shù)列{},{}(≠0,n∈N*)滿足

(1)令,求數(shù)列{}的通項(xiàng)公式;

(2)若,求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校100名高三學(xué)生的視力情況,得到頻率分布直方圖如下圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,視力在4.65.0之間的學(xué)生數(shù)為b,則a,b的值分別為 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)6個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,點(diǎn)MPB中點(diǎn),底面ABCD為梯形,ABCD,ADCD,AD=CD=PC=AB.

1)證明:CM∥平面PAD

2)若四棱錐P-ABCD的體積為4,求點(diǎn)M到平面PAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,點(diǎn)為左焦點(diǎn),過點(diǎn)軸的垂線交橢圓兩點(diǎn),且.

(1)求橢圓的方程;

(2)在圓上是否存在一點(diǎn),使得在點(diǎn)處的切線與橢圓相交于、兩點(diǎn)滿足?若存在,求的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為正實(shí)數(shù).

討論函數(shù)的單調(diào)性;

若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:.

1)求直線和曲線的直角坐標(biāo)方程;

2,直線和曲線交于、兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市舉辦酬賓活動(dòng),單次購物超過元的顧客可參與一次抽獎(jiǎng)活動(dòng),活動(dòng)規(guī)則如下:盒子中裝有大小和形狀完全相同的個(gè)小球,其中個(gè)紅球、個(gè)白球和個(gè)黑球,從中不放回地隨機(jī)抽取個(gè)球,每個(gè)球被抽到的機(jī)會(huì)均等.每抽到個(gè)紅球記分,每抽到個(gè)白球記分,每抽到個(gè)黑球記.如果抽取個(gè)球總得分分可獲得元現(xiàn)金,總得分低于分沒有現(xiàn)金,其余得分可獲得元現(xiàn)金.

1)設(shè)抽取個(gè)球總得分為隨機(jī)變量,求隨機(jī)變量的分布列;

2)設(shè)每位顧客一次抽獎(jiǎng)獲得現(xiàn)金元,求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案