13.函數(shù)f(x)=1+lgx+$\frac{9}{lgx}$(0<x<1)的最大值是-5.

分析 由0<x<1,可得lgx<0,即-lgx>0,則f(x)=1+lgx+$\frac{9}{lgx}$=1-[(-lgx)+$\frac{9}{-lgx}$],由基本不等式即可得到所求最大值.

解答 解:由0<x<1,可得lgx<0,即-lgx>0,
則f(x)=1+lgx+$\frac{9}{lgx}$=1-[(-lgx)+$\frac{9}{-lgx}$]≤1-2$\sqrt{(-lgx)•\frac{9}{-lgx}}$=1-6=-5,
當(dāng)且僅當(dāng)lgx=-3即x=10-3,取得等號,
即有f(x)的最大值為-5.
故答案為:-5.

點(diǎn)評 本題考查函數(shù)的最值的求法,注意運(yùn)用基本不等式,以及滿足的條件:一正二定三等,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,圓C內(nèi)切于扇形AOB,$∠AOB=\frac{π}{3}$,若在扇形AOB內(nèi)任取一點(diǎn),則該點(diǎn)在圓C內(nèi)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖動直線l:y=b與拋物線y2=4x交于點(diǎn)A,與橢圓$\frac{x^2}{2}+{y^2}=1$交于拋物線右側(cè)的點(diǎn)B,F(xiàn)為拋物線的焦點(diǎn),則AF+BF+AB的最大值為( 。
A.3B.$3\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右頂點(diǎn)為E,過雙曲線的左焦點(diǎn)且垂直于x軸的直線與該雙曲線相交于A、B兩點(diǎn),若∠AEB=90°,則該雙曲線的離心率e是(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.2C.$\frac{{\sqrt{5}+1}}{2}$或2D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{π}{3}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,若(2$\overrightarrow{a}$+λ$\overrightarrow$)⊥$\overrightarrow$,則實(shí)數(shù)λ=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,且PA=AD=3,$CD=\sqrt{6}$,E、F分別是AB、PD的中點(diǎn),則點(diǎn)F到平面PCE的距離為( 。
A.$\frac{{3\sqrt{2}}}{4}$B.$\sqrt{2}$C.$\frac{{3\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=sin2x的單調(diào)減區(qū)間是( 。
A.$[\frac{π}{2}+2kπ,\frac{3}{2}π+2kπ](k∈Z)$B.$[kπ+\frac{π}{4},kπ+\frac{3}{4}π](k∈Z)$
C.[π+2kπ,3π+2kπ](k∈Z)D.$[kπ-\frac{π}{4},kπ+\frac{π}{4}](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,設(shè)向量$\overrightarrow a=(sinθ,-\frac{1}{2}),\overrightarrow b=(cosθ,\frac{1}{4})$,其中θ∈(0,π).
(1)若$\overrightarrow a∥\overrightarrow b$,求sinθ和cosθ的值;
(2)設(shè)$ϕ∈(0,\frac{π}{2})$,且$sin(ϕ+\frac{π}{2})+cos(ϕ-\frac{3π}{2})=0$,若$sinθcosϕ+cosθsinϕ=\frac{{\sqrt{10}}}{4}$,求證:$\overrightarrow a⊥\overrightarrow b$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中,不是公理的是(  )
A.平行于同一條直線的兩條直線平行
B.如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線在此平面內(nèi)
C.如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線
D.如果兩個角的兩邊分別平行,則這兩個角相等或互補(bǔ)

查看答案和解析>>

同步練習(xí)冊答案