12.已知命題p:“?x∈R,x≥2,那么命題¬p為?x∈R,x<2.

分析 根據(jù)全稱命題的否定是特稱命題進(jìn)行求解即可.

解答 解:命題是全稱命題,則命題的否定是:?x∈R,x<2,
故答案為:?x∈R,x<2

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c(a<b<c),已知2acosC+2ccosA=a+c.
(1)若3c=5a,求$\frac{sinA}{sinB}$的值;
(2)若2csinA-$\sqrt{3}$a=0,且c-a=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a>0,b>0,若$\sqrt{5}$是5a與5b的等比中項(xiàng),則$\frac{1}{a}$+$\frac{1}$的最小值為( 。
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.5名大學(xué)生被分配到4個(gè)地區(qū)支教,每個(gè)地區(qū)至少分配1人,其中甲乙兩名同學(xué)因?qū)I(yè)相同,不能分配在同一地區(qū),則不同的分配方法的種數(shù)為( 。
A.120B.144C.216D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.自圓x2+y2-2x-6y+9=0外一點(diǎn)P(5,0)向該圓引切線,切點(diǎn)分別為A,B,過A,B的直線方程為(  )
A.3x+4y-20=0B.4x+3y-4=0C.3x-4y-15=0D.4x-3y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.根據(jù)如圖給出的2004年至2013年我國(guó)二氧化碳年排放量(單位:萬噸)柱形圖,以下結(jié)論中不正確的是( 。
A.2006年以來我國(guó)二氧化碳年排放量與年份正相關(guān)
B.2006年以來我國(guó)二氧化碳年排放量呈減少趨勢(shì)
C.2007年我國(guó)治理二氧化碳排放顯現(xiàn)成效
D.逐年比較,2008年減少二氧化碳排放量的效果最顯著

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+|{x+m}|,m∈R$
(1)求f(x)在[0,1]上的最值;
(2)是否存在m的值,當(dāng)x∈[0,1]時(shí),[f(x)+2m]2≤1恒成立,若存在求出m的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在四棱錐P-ABCD中,底面ABCD為菱形,∠DAB=60°,PC⊥平面ABCD,且AB=2,PC=$\sqrt{6}$,F(xiàn)是PA的中點(diǎn).
(Ⅰ)求證:CF⊥平面PDB;
(Ⅱ)求平面ADP與平面BCP所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,二面角α-l-β的大小是60°,線段AB?α.B∈l,AB與l所成的角為30°.求直線AB與平面β所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案