【題目】一個(gè)袋中裝有個(gè)形狀大小完全相同的小球,球的編號(hào)分別為,,,,,.
(Ⅰ)若從袋中每次隨機(jī)抽取個(gè)球,有放回的抽取次,求取出的兩個(gè)球編號(hào)之和為的概率.
(Ⅱ)若從袋中每次隨機(jī)抽取個(gè)球,有放回的抽取次,求恰有次抽到號(hào)球的概率.
(Ⅲ)若一次從袋中隨機(jī)抽取個(gè)球,記球的最大編號(hào)為,求隨機(jī)變量的分布列.
(Ⅳ)若從袋中每次隨機(jī)抽取個(gè)球,有放回的抽取次,記球的最大編號(hào)為,求隨機(jī)變量的分布列.
【答案】(1)(2)(3)見解析(4)見解析
【解析】分析:(1)先根據(jù)乘法計(jì)數(shù)原理求總事件數(shù),再求編號(hào)之和為的事件數(shù),最后根據(jù)古典概型概率公式求結(jié)果.(2)先根據(jù)組合數(shù)求總事件數(shù),再求抽到號(hào)球的事件數(shù),根據(jù)古典概型概率公式一次抽到號(hào)球的概率.最后獨(dú)立重復(fù)試驗(yàn)得恰有次抽到號(hào)球的概率..(3)先確定隨機(jī)變量的取法,分別求對(duì)應(yīng)概率,列表可得分布列,(4)先確定隨機(jī)變量的取法,分別求對(duì)應(yīng)概率,列表可得分布列.
詳解:
(Ⅰ)共有種,
和為的共種,
∴.
(Ⅱ)為抽個(gè)球,
有的概率,
∴為所求.
(Ⅲ)可取,,,,
,
,
,
.
(Ⅳ),
,
,
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究患肺癌與是否吸煙有關(guān),某腫瘤機(jī)構(gòu)隨機(jī)抽取了40人做相關(guān)調(diào)查,其中不吸煙人數(shù)與吸煙人數(shù)相同,已知吸煙人數(shù)中,患肺癌與不患肺癌的比為;不吸煙的人數(shù)中,患肺癌與不患肺癌的比為.
(1)現(xiàn)從患肺癌的人中用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取2人進(jìn)行調(diào)查,求這兩人都是吸煙患肺癌的概率;
(2)是否有99.9%的把握認(rèn)為患肺癌與吸煙有關(guān)?
附: ,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知短軸長為2的橢圓,直線的橫、縱截距分別為,且原點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)直線經(jīng)過橢圓的右焦點(diǎn)且與橢圓交于兩點(diǎn),若橢圓上存在一點(diǎn)滿足,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線關(guān)于軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過拋物線的焦點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線過軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在參加某次社會(huì)實(shí)踐的學(xué)生中隨機(jī)選取名學(xué)生的成績作為樣本,這名學(xué)生的成績?nèi)吭?/span>分至分之間,現(xiàn)將成績按如下方式分成組:第一組,成績大于等于分且小于分;第二組,成績大于等于分且小于分;第六組,成績大于等于分且小于等于分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的名學(xué)生中.
(Ⅰ)求的值及成績?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù).
(Ⅱ)從成績小于分的學(xué)生中隨機(jī)選名學(xué)生,求最多有名學(xué)生成績?cè)趨^(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當(dāng)a=3時(shí),求A∩B;
(2)若a>0,且A∩B=,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離,傾斜角
為的直線經(jīng)過焦點(diǎn),且與拋物線交于、兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線的方程;
(2)若為銳角,作線段的垂直平分線交軸于點(diǎn),證明為定值,并求此定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com