18.已知全集U={1,2,3,4,5,6,7,8},A,B均為U的子集,且A∩(∁UB)={1,8},(∁UA)∩B={2,6},∁U(A∪B)={4,5,7},則集合A={1,3,8}.(用列舉法表示)

分析 根據(jù)全集U與∁U(A∪B)得出A∪B,
再根據(jù)A∩(∁UB)和(∁UA)∩B,即可寫出集合A.

解答 解:如圖所示,
全集U={1,2,3,4,5,6,7,8},A,B均為U的子集,
U(A∪B)={4,5,7},
∴A∪B={1,2,3,6,8},
又A∩(∁UB)={1,8},(∁UA)∩B={2,6},
∴集合A={1,3,8}.
故答案為:{1,3,8}.

點評 本題考查了集合的混合運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f (x)=lnx-mx+m.
(1)若f (x)≤0在x∈(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(2)在(1)的條件下,對任意的0<a<b,求證:$\frac{f(b)-f(a)}{b-a}<\frac{1}{a(a+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x∈Z,A={奇數(shù)},B={偶數(shù)},若命題p:?x∈A,2x∈B,則其否定為( 。
A.?x∈A,2x∉BB.?x∉A,2x∉BC.?x∉A,2x∈BD.?x∈A,2x∉B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列兩組變量具有相關(guān)關(guān)系的是( 。
A.人的體重與學(xué)歷B.圓的半徑與其周長
C.人的生活水平與購買能力D.成年人的財富與體重

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.滿足{1,2}∪B={1,2,3}的集合B的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=lg\frac{kx-1}{x-1}(k∈R)$.
(1)當(dāng)k=0時,求函數(shù)f(x)的值域;
(2)當(dāng)k>0時,求函數(shù)f(x)的定義域;
(3)若函數(shù)f(x)在區(qū)間[10,+∞)上是單調(diào)增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將函數(shù)y=sinx的圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標(biāo)不變),再將得到的圖象向左平移$\frac{π}{12}$個單位長度,所得圖象的函數(shù)解析式為y=sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.心理學(xué)家分析發(fā)現(xiàn)“喜歡空間現(xiàn)象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗證此結(jié)論,從全體組員中按層抽樣的方法抽取50名同學(xué)(男生30人,女生20人),給每位同學(xué)立體幾何體,代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進行解答,選題情況統(tǒng)計如表:(單位:人)
立體幾何題代數(shù)題總計
男同學(xué)22830
女同學(xué)81220
總計302050
(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關(guān)?
(2)經(jīng)統(tǒng)計得,選擇做立體幾何題的學(xué)生正答率為$\frac{4}{5}$,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯的學(xué)生中任意抽取兩人對他們的答題情況進行研究,求恰好抽到男女生各一人的概率.
附表及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若$tan({α+\frac{π}{4}})=2$,則$\frac{sinα-cosα}{sinα+cosα}$=( 。
A.$\frac{1}{2}$B.2C.-2D.$-\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案