【題目】設(shè)函數(shù) ,函數(shù) ,其中a為常數(shù)且a>0,令函數(shù)f(x)=g(x)h(x).
(1)求函數(shù)f(x)的表達(dá)式,并求其定義域;
(2)當(dāng) 時(shí),求函數(shù)f(x)的值域;
(3)是否存在自然數(shù)a,使得函數(shù)f(x)的值域恰為 ?若存在,試寫出所有滿足條件的自然數(shù)a所構(gòu)成的集合;若不存在,試說明理由.

【答案】
(1)解: ,其定義域?yàn)閇0,a];
(2)解:令 ,則 且x=(t﹣1)2

(5分)

在[1,2]上遞減,在[2,+∞)上遞增,

上遞增,即此時(shí)f(x)的值域?yàn)?


(3)解:令 ,則 且x=(t﹣1)2

在[1,2]上遞減,在[2,+∞)上遞增,

∴y= 在[1,2]上遞增, 上遞減,

t=2時(shí) 的最大值為

∴a≥1,又1<t≤2時(shí)

∴由f(x)的值域恰為 ,由 ,解得:t=1或t=4

即f(x)的值域恰為 時(shí),

所求a的集合為{1,2,3,4,5,6,7,8,9}


【解析】(1)將g(x),h(x)的解析式相乘可得到f(x)的解析式,g(x)和h(x)的定義域的交集即為f(x)的定義域,(2)當(dāng)a=時(shí),使用換元法,注意新元的取值范圍,結(jié)合對(duì)勾函數(shù)可得出f(x)的值域,(3)使用換元法得出f(t)的解析式,分類進(jìn)行討論得到a的集合.
【考點(diǎn)精析】利用函數(shù)的定義域及其求法和函數(shù)的值域?qū)︻}目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式x2+mx+3≤0的解集為A=[1,n],集合B={x|x2﹣ax+a≤0}.
(1)求m﹣n的值;
(2)若A∪B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0時(shí),有 >0.
(Ⅰ)證明f(x)在[﹣1,1]上是增函數(shù);
(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
(Ⅲ)若f(x)≤t2﹣2at+1對(duì)x∈[﹣1,1],a∈[﹣1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用M[A]表示非空集合A中的元素個(gè)數(shù),記|A﹣B|= ,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x取實(shí)數(shù),則f(x)與g(x)表示同一個(gè)函數(shù)的是( )
A.f(x)=x,g(x)=
B.f(x)= ,g(x)=
C.f(x)=1,g(x)=(x﹣1)0
D.f(x)= ,g(x)=x﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記關(guān)于x的不等式 的解集為P,不等式|x+2|<3的解集為Q
(1)若a=3,求P;
(2)若P∪Q=Q,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個(gè)不同的公共點(diǎn),其中一個(gè)公共點(diǎn)的坐標(biāo)為(c,0),且當(dāng)0<x<c時(shí),恒有f(x)>0.
(1)當(dāng)a=1, 時(shí),求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函數(shù)的圖象與坐標(biāo)軸的三個(gè)交點(diǎn)為頂點(diǎn)的三角形的面積為8,求a的取值范圍;
(4)若不等式m2﹣2km+1+b+ac≥0對(duì)所有k∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A={(x,y)|y=a|x|,x∈R},B={(x,y)|y=x+a,x∈R},已知集合A∩B中有且僅有一個(gè)元素,則常數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=f(x)滿足f(﹣2)=f(4)=﹣16,且f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1](t>0)上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案