某種商品的成本為5元/件,開(kāi)始按8元/件銷(xiāo)售,銷(xiāo)售量為50件,為了獲得最大利潤(rùn),商家先后采取了提價(jià)與降價(jià)兩種措施進(jìn)行試銷(xiāo).經(jīng)試銷(xiāo)發(fā)現(xiàn):日銷(xiāo)售量Q(件)與實(shí)際銷(xiāo)售價(jià)x(元)滿(mǎn)足關(guān)系:
Q=
50-10(x-8),8≤x<13
39(2x2-29x+107),(5<x<7)
198-6x
x-5
,(7≤x<8)

(1)求總利潤(rùn)(利潤(rùn)=銷(xiāo)售額-成本)y(元)與銷(xiāo)售價(jià)x(件)的函數(shù)關(guān)系式;
(2)試問(wèn):當(dāng)實(shí)際銷(xiāo)售價(jià)為多少元時(shí),總利潤(rùn)最大.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專(zhuān)題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)利潤(rùn)=銷(xiāo)售額-成本,寫(xiě)出總利潤(rùn)y(元)與銷(xiāo)售價(jià)x(件)的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式,在每一段上討論函數(shù)的最大值,從而求出整個(gè)函數(shù)的最大值.
解答: 解:(1)根據(jù)題意,得;
總利潤(rùn)y(元)與銷(xiāo)售價(jià)x(件)的函數(shù)關(guān)系式是
y=
39(2x2-29x+107)(x-5),5<x<7
198-6x
x-5
(x-5),7≤x<8
[50-10(x-8)](x-5),8≤x<13

=
39(2x3-39x2+252x-535),5<x<7
6(33-x),7≤x<8
-10x2+180x-650,8≤x<13

(2)由(1)得:
當(dāng)5<x<7時(shí),y=39(2x3-39x2+252x-535),
∴y′=234(x2-13x+42)=234(x-6)(x-7),
當(dāng)5<x<6時(shí),y′>0,y=f(x)為增函數(shù),
當(dāng)6<x<7時(shí),y′<0,y=f(x)為減函數(shù),
∴當(dāng)x=6時(shí),f(x)max=f(6)=195;
當(dāng)7≤x<8時(shí),y=6(33-x)∈(150,156];
當(dāng)8≤x<13時(shí),y=-10(x-9)2+160,
當(dāng)x=9時(shí),ymax=160;
綜上知:當(dāng)x=6時(shí),總利潤(rùn)最大,最大值為195.
點(diǎn)評(píng):本題考查了函數(shù)模型的應(yīng)用問(wèn)題,解題時(shí)列出函數(shù)解析式,從而分析函數(shù)的性質(zhì),是中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列函數(shù),其中奇函數(shù)的個(gè)數(shù)為( 。
①y=
ax+1
ax-1
;  ②y=
lg(1-x2)
|x+5|-5
;  ③y=
|x|
x
;  ④y=loga
1+x
1-x
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓
x2
a2
+
y2
b2
=1(a>b>0)左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),其離心率為
1
2
,且過(guò)點(diǎn)(-1,
3
2
).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(xiàn)l:y=-
1
2
x+m與橢圓交于A、B兩點(diǎn),與以F1F2為直徑的圓交于C、D兩點(diǎn),且滿(mǎn)足
|AB|
|CD|
=
5
3
4
,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)正數(shù)a,b,可按規(guī)則c=ab+a+b擴(kuò)充為一個(gè)新數(shù)c,在a,b,c三個(gè)數(shù)中取兩個(gè)較大的數(shù),按上述規(guī)則擴(kuò)充得到一個(gè)新數(shù),依次下去,將每擴(kuò)充一次得到一個(gè)新數(shù)稱(chēng)為一次操作.
(1)若a=1,b=3,按上述規(guī)則操作三次,則第三次擴(kuò)充所得的新數(shù)是
 
;
(2)若p>q>0,經(jīng)過(guò)6次操作后擴(kuò)充所得的數(shù)為(q+1)m(p+1)n-1(m,n為正整數(shù)),則m+n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
k(x-1)
x

(1)當(dāng)k=e時(shí),求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間和極值;
(2)若f(x)≥g(x)恒成立,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,若F1,F(xiàn)2是雙曲線(xiàn)
x2
9
-
y2
16
=1的兩個(gè)焦點(diǎn).
(1)若雙曲線(xiàn)上一點(diǎn)M到它的一個(gè)焦點(diǎn)的距離等于16,求點(diǎn)M到另一個(gè)焦點(diǎn)的距離;
(2)若P是雙曲線(xiàn)左支上的點(diǎn),且|PF1|•|PF2|=32,試求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-|x-1|,x∈(-∞,2)
1
2
f(x-2),x∈[2,+∞)
,則函數(shù)F(x)=xf(x)-1的零點(diǎn)個(gè)數(shù)為( 。
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+bx(a>0)且導(dǎo)數(shù)f′(1)=0.
(Ⅰ)試用含有a的式子表示b,并求f(x)單調(diào)區(qū)間;
(Ⅱ)若f(x)<2-
1
2
ax2對(duì)一切正數(shù)x都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以?huà)佄锞(xiàn)y=
1
4
x2的焦點(diǎn)為圓心,3為半徑的圓與直線(xiàn)4x+3y+2=0相交所得的弦的長(zhǎng)度是( 。
A、
4
5
2
B、4
2
C、2
2
D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案