【題目】已知f(x)=ax+ ,g(x)=ex﹣3ax,a>0,若對x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)總有解,則實(shí)數(shù)a的取值范圍為 .
【答案】[ ,+∞)
【解析】解:當(dāng)x∈(0,1)時(shí),f(x)=ax+ 為減函數(shù),
由f(1)=2a得:f(x)的值域?yàn)椋?a,+∞),
若若對x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)總有解,
則g(x)的值域B應(yīng)滿足(2a,+∞)B,
令g′(x)=ex﹣3a=0,則ex=3a,即x=ln3a,
若ln3a≤1,即3a≤e,
此時(shí)g(x)>g(1)=e﹣3a,
此時(shí)由e﹣3a≤2a得: ≤a≤ ,
若ln3a>1,即3a>e,
g(x)在(1,ln3a)上為減函數(shù),在(ln3a,+∞)上為增函數(shù),
此時(shí)當(dāng)x=ln3a時(shí),函數(shù)取最小值3a(1﹣ln3a)<0<2a滿足條件;
綜上可得:實(shí)數(shù)a的取值范圍為[ ,+∞)
所以答案是:[ ,+∞).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2an﹣2;數(shù)列{bn}的前n項(xiàng)和為Tn , 且滿足b1=1,b2=2, .
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得 恰為數(shù)列{bn}中的一項(xiàng)?若存在,求所有滿足要求的bn;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了綠化城市,要在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,如圖所示,另外,△AEF內(nèi)部有一文物保護(hù)區(qū)不能占用,經(jīng)測量AB=100 m,BC=80 m,AE=30 m,AF=20 m,應(yīng)如何設(shè)計(jì)才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】浦東新區(qū)某鎮(zhèn)投入資金進(jìn)行生態(tài)環(huán)境建設(shè),2017年度計(jì)劃投入800萬元,以后每年投入將比上一年減少 ,今年該鎮(zhèn)旅游收入估計(jì)500萬元,由于該項(xiàng)建設(shè)對旅游的促進(jìn)作用,預(yù)計(jì)今后的旅游收入每年會比上一年增加 ;
(1)設(shè)n年內(nèi)(今年為第一年)總投入為an萬元,旅游總收入為bn萬元,寫出an , bn的表達(dá)式;
(2)至少經(jīng)過幾年,旅游業(yè)的總收入才能超過總投入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】相傳古代印度國王在獎(jiǎng)賞他聰明能干的宰相達(dá)依爾(國際象棋發(fā)明者)時(shí),問他需要什么,達(dá)依爾說:“國王只要在國際象棋棋盤的第一格子上放一粒麥子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64格(國際象棋棋盤格數(shù)是8×8=64),我就感恩不盡,其他什么也不要了.”國王想:“這才有多少,還不容易!”于是讓人扛來一袋小麥,但不到一會兒就用完了,再來一袋很快又沒有了,結(jié)果全印度的糧食用完還不夠,國王很奇怪,怎么也算不清這筆賬.請你設(shè)計(jì)一個(gè)程序框圖表示其算法,來幫國王計(jì)算一下需要多少粒小麥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ax2(其中a是實(shí)數(shù)),且f'(1)=3.
(1)求a的值及曲線y=f(x)在點(diǎn)Q(1,f(1))處的切線方程;
(2)求f(x)在區(qū)間[0,2]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程x2+mx+1=0有兩個(gè)不相等的實(shí)根;
命題q:函數(shù)f(x)=lg[x2﹣2(m+1)x+m(m+1)]的定義域?yàn)镽,
若“p∨q”為真,“p∧q”為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 是奇函數(shù),則( )
A. ,且f(x)為增函數(shù)
B.a=﹣1,且f(x)為增函數(shù)
C. ,且f(x)為減函數(shù)
D.a=﹣1,且f(x)為減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對稱,其中為常數(shù).
(1)求的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com