已知f(x)=(x-m)(x-n)+2(其中m<n),并且α、β(α<β)是方程f(x)=0的兩根,則實(shí)數(shù)m,n,α,β 的大小關(guān)系可能是
m<α<β<n
m<α<β<n
分析:利用二次函數(shù)的圖象和二次方程根的關(guān)系確定實(shí)數(shù)m,n,α,β 的大小.
解答:解:因?yàn)棣、β(α<β)是方程f(x)=0的兩根,
所以f(α)=f(β)=0,
因?yàn)槎魏瘮?shù)開口向上,且f(m)=2>0,f(n)=2>0,
所以n>β,m<α,
即m,n,α,β 的大小關(guān)系是m<α<β<n.
故答案為:m<α<β<n.
點(diǎn)評(píng):本題主要考查二次函數(shù)的圖象和性質(zhì),根據(jù)二次函數(shù)根的分布是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f (x)=sin (x+
π
2
),g (x)=cos (x-
π
2
),則下列命題中正確的是( 。
A、函數(shù)y=f(x)•g(x)的最小正周期為2π
B、函數(shù)y=f(x)•g(x)是偶函數(shù)
C、函數(shù)y=f(x)+g(x)的最小值為-1
D、函數(shù)y=f(x)+g(x)的一個(gè)單調(diào)增區(qū)間是[-
4
,
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1,x<0
2,x≥0
,g(x)=
3f(x-1)-f(x-2)
2

(1)當(dāng)1≤x<2時(shí),求g(x);
(2)當(dāng)x∈R時(shí),求g(x)的解析式,并畫出其圖象;
(3)求方程xf[g(x)]=2g[f(x)]的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化簡f (x)的解析式;
(2)若0≤θ≤π,求θ使函數(shù)f (x)為偶函數(shù);
(3)在(2)成立的條件下,求滿足f (x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案