3.已知實(shí)數(shù)x,y滿足2x+y+10=0,那么$\sqrt{{x^2}+{y^2}}$的最小值為( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.$2\sqrt{5}$D.$2\sqrt{10}$

分析 利用點(diǎn)到直線的距離公式即可得出.

解答 解:$\sqrt{{x^2}+{y^2}}$的最小值為原點(diǎn)到直線的距離d=$\frac{10}{\sqrt{{2}^{2}+{1}^{2}}}$=2$\sqrt{5}$.
故選:C.

點(diǎn)評 本題考查了點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若直線l經(jīng)過點(diǎn)(-1,3),且斜率為-2,則直線l的方程為2x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)$f(x)=\sqrt{{x^2}+mx+1}$的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+φ)(A、ω>0)的圖象如圖所示,則其解析式可以是( 。
A.$y=sin({x+\frac{π}{6}})$B.$y=sin({x+\frac{π}{3}})$C.$y=sin({2x-\frac{2π}{3}})$D.$y=sin({2x+\frac{π}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知圓的一般方程為x2+y2+Dx+Ey+F=0,則圓心坐標(biāo)是( 。
A.$({\frac{E}{2},\frac{D}{2}})$B.$({-\frac{E}{2},-\frac{D}{2}})$C.$({\frac{D}{2},\frac{E}{2}})$D.$({-\frac{D}{2},-\frac{E}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知復(fù)數(shù)z滿足(1-i)z=1+i(其中i為虛數(shù)單位),則|z+1|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.i是虛數(shù)單位,i2012等于( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.下列命題
①“等邊三角形的三內(nèi)角均為60°”的逆命題
②若k>0,則方程x2+2x-k=0有實(shí)根“的逆命題
③“全等三角形的面積相等”的否命題
④“若ab≠0,則a≠0”的逆否命題,
其中真命題的個數(shù)是:2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>1}\\{{x}^{2}-3,x≤1}\end{array}\right.$,若關(guān)于x的方程f(x)=$\frac{a}{x}$恰有兩個不同解,則實(shí)數(shù)a的取值范圍為[-2,0]∪{2}.

查看答案和解析>>

同步練習(xí)冊答案