數(shù)列{an}中,對任意的m,n,p∈N+,當(dāng)m+n=p時,都有am•an=ap,若a1=
1
2
,則a10的值為
 
考點:歸納推理
專題:計算題,推理和證明
分析:利用am•an=ap,可得
a
2
1
=a2,a1•a2=a3,a1•a3=a4,…,a1•a9=a10,累乘得a10的值.
解答: 解:∵am•an=ap
a
2
1
=a2,
a1•a2=a3,
a1•a3=a4

a1•a9=a10,
累乘得
a
10
1
=a10=(
1
2
10=
1
1024

故答案為:
1
1024
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|a-1<x<2a+1},B={x|0<x<1},
(1)若A∩B=∅,求a的取值范圍;
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人按五局三勝制進行乒乓球比賽,已知甲獲勝的概率為0.6,則甲打滿5局才獲勝的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨著經(jīng)濟社會的發(fā)展,消費者對食品安全的關(guān)注度越來越高,通過隨機詢問某地區(qū)110名居民在購買食品時是否看生產(chǎn)日期與保質(zhì)期等內(nèi)容,得到如下的列聯(lián)表:
60歲以下60歲以上總計
看生產(chǎn)日期與保質(zhì)期503080
不看生產(chǎn)日期與保質(zhì)期102030
總計6050110
(1)從這50名60歲以上居民中按是否看生產(chǎn)日期與保質(zhì)期采取分層抽樣,抽取一個容量為5的樣本,問樣本中看與不看生產(chǎn)日期與保質(zhì)期的60歲以上居民各有多少名?
(2)根據(jù)以上列聯(lián)表,在犯錯誤的概率不超過1%的情況下,是否有把握認(rèn)為“該地區(qū)居民的年齡與在購買食品時是否看生產(chǎn)日期與保質(zhì)期”有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果有底的圓柱底面直徑和高都等于球的直徑,則圓柱與球的表面積之比為( 。
A、3:2B、3:1
C、2:1D、2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某居民小區(qū)年齡在20歲到45歲的居民上網(wǎng)情況的頻率分布直方圖,現(xiàn)已知年齡  在[30,35),[35,40),[40,45]的上網(wǎng)人數(shù)呈現(xiàn)遞減的等差數(shù)列,則年齡在[35,40)的頻( 。
A、0.04B、0.06
C、0.2D、0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一副撲克牌(54張)中抽取一張牌,抽到牌“K”的概率是( 。
A、
1
54
B、
1
27
C、
1
18
D、
2
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,過點P(2,0)的直線l的參數(shù)方程為
x=2-
3
t
y=t
(t為參數(shù)),圓C的方程為x2+y2=9,以坐標(biāo)原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系
(1)求直線l的普通方程及圓C的極坐標(biāo)方程;
(2)設(shè)直線l與圓C交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-3,2),點B是不等式組
x-3y+3≥0
x+y-2≥0
所表示的平面區(qū)域內(nèi)的一個動點,O為坐標(biāo)原點,則|
OA
+
OB
|的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案