已知數(shù)列{an}的前n項和為Sn,a1=-
2
3
,滿足Sn+
1
Sn
+2=an(n≥2).
(1)計算S1,S2,S3,S4;
(2)由(1)猜想Sn的表達式.
考點:歸納推理,數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)由題設得Sn-1Sn+2Sn+1=0,代入計算,即可計算S1,S2,S3,S4;
(2)由(1)猜想Sn的表達式.
解答: 解:(1)由題設得Sn2+2Sn+1-anSn=0,當n≥2(n∈N*)時,an=Sn-Sn-1,
代入上式,得Sn-1Sn+2Sn+1=0.(*)
S1=a1=-
2
3
,
令n=2可得S2+
1
S2
=a2-2=S2-a1-2,∴S2=-
3
4
,
同理S3=-
4
5
,S4=-
5
6

(2)由(1)猜想Sn=-
n+1
n+2
點評:本題考查歸納推理,考查數(shù)列遞推式,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列命題正確的是( 。
A、經(jīng)過三點確定一個平面
B、經(jīng)過一條直線和一個點確定一個平面
C、兩兩相交且不共點的三條直線確定一個平面
D、四邊形確定一個平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是△ABC所在平面上一點,若(
OA
+
OB
)•
AB
=(
OB
+
OC
)•
BC
=(
OC
+
OA
)•
CA
=0,則O點是三角形的
 
心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinωx-2sin2
ωx
2
(ω>0)的最小正周期為3π.在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正三角形ABC的邊長為1,設
AB
=
a
AC
=
b

(Ⅰ)若D是AB的中點,用
a
b
表示向量
CD
;
(Ⅱ)求2
a
+
b
與-3
a
+2
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x),g(x)的導函數(shù)分別為f′(x),g′(x)且f′(x)<g′(x).則下列結(jié)論一定成立的是( 。
A、f(1)+g(0)<g(1)+f(0)
B、f(1)+g(0)>g(1)+f(0)
C、f(1)-g(0)>g(1)-f(0)
D、f(1)-g(0)<g(1)-f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠去年初完成了生產(chǎn)設備的升級,它每年的總產(chǎn)量y(萬噸)與設備升級后的時間x(年)的函數(shù)關系近似地符合函數(shù)模型y=a
x
+b,已知該廠去年、今年的總產(chǎn)量分別為440(萬噸)、240
2
+200 (萬噸),則明年的總產(chǎn)量約為
 
(萬噸).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)為定義在R上的奇函數(shù),當x≥0時,f(x)=2x-2x+m(m為常數(shù)),則f(-2)等于( 。
A、-
5
2
B、-1
C、1
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓的方程為x2+y2+kx+2y+k2=0,當圓面積最大時,圓心坐標為( 。
A、(-1,1)
B、(1,-1)
C、(-1,0)
D、(0,-1)

查看答案和解析>>

同步練習冊答案