5.漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽(yù).現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一?少1.2元,如果雕刻師當(dāng)天超額完成任務(wù),則超出的部分每粒賺1.7元;如果當(dāng)天未能按量完成任務(wù),則按實(shí)際完成的雕刻量領(lǐng)取當(dāng)天工資.
(I)求雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該雕刻師記錄了過去10天每天的雕刻量n(單位:粒),整理得如表:
雕刻量n210230250270300
頻數(shù)12331
以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(ⅰ)求該雕刻師這10天的平均收入;
(ⅱ)求該雕刻師當(dāng)天收入不低于300元的概率.

分析 (Ⅰ)當(dāng)n≥250時(shí),f(n)=250×1.2+1.7×(n-250),當(dāng)n<250時(shí),f(n)=1.2n,由此能求出雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式.
(Ⅱ)(i)由題意得f(210)=252,f(230)=276,f(250)=300,f(270)=334,f(300)=385,X的可能取值為252,276,300,334,385,分別求出相應(yīng)的概率,由此能求出該雕刻師這10天的平均收入.
(ii)由X的分布列知該雕刻師當(dāng)天收入不低于300元的概率:P=P(X=300)+P(X=334)+P(X=385),由此能求出結(jié)果.

解答 解:(Ⅰ)當(dāng)n≥250時(shí),f(n)=250×1.2+1.7×(n-250)=1.7n-125,
當(dāng)n<250時(shí),f(n)=1.2n,
∴雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式:
f(n)=$\left\{\begin{array}{l}{1.7n-125,n≥250}\\{1.2n,n<250}\end{array}\right.$,(n∈N).
(Ⅱ)(i)由題意得f(210)=252,f(230)=276,f(250)=300,f(270)=334,f(300)=385,
∴X的可能取值為252,276,300,334,385,
P(X=252)=0.1,P(X=276)=0.2,P(X=300)=0.3,
P(X=334)=0.3,P(X=385)=0.1,
∴X的分布列為:

 X 252 276 300 334 385
 P 0.1 0.2 0.3 0.3 0.1
E(X)=252×0.1+276×0.2+300×0.3+334×0.3+385×0.1=338(元),
∴該雕刻師這10天的平均收入為338元.
(ii)由X的分布列知:
該雕刻師當(dāng)天收入不低于300元的概率:
P=P(X=300)+P(X=334)+P(X=385)
=0.3+0.3+0.1=0.7.

點(diǎn)評 本題考查函數(shù)解析式的求法,考查離散型隨機(jī)的分布列、數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間思維能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.斐波那契數(shù)列{an}滿足:${a_1}=1,{a_2}=1,{a_n}={a_{n-1}}+{a_{n-2}}({n≥3,n∈{N^*}})$.若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長為1,記前n項(xiàng)所占的格子的面積之和為Sn,每段螺旋線與其所在的正方形所圍成的扇形面積為cn,則下列結(jié)論錯(cuò)誤的是( 。
A.${S_{n+1}}=a_{n+1}^2+{a_{n+1}}•{a_n}$B.a1+a2+a3+…+an=an+2-1
C.a1+a3+a5+…+a2n-1=a2n-1D.4(cn-cn-1)=πan-2•an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,點(diǎn)D為側(cè)棱BB1上的動(dòng)點(diǎn),當(dāng)AD+DC1最小時(shí),三棱錐D-ABC1的體積為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,已知點(diǎn)P(2,0),曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的普通方程和極坐標(biāo)方程;
(Ⅱ)過點(diǎn)P且傾斜角為$\frac{π}{4}$的直線l交曲線C于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)小球從100米高處自由落下,每次著地后又跳回到原高度的一半再落下.執(zhí)行下面的程序框圖,則輸出的S表示的是( 。
A.小球第10次著地時(shí)向下的運(yùn)動(dòng)共經(jīng)過的路程
B.小球第11次著地時(shí)向下的運(yùn)動(dòng)共經(jīng)過的路程
C.小球第10次著地時(shí)一共經(jīng)過的路程
D.小球第11次著地時(shí)一共經(jīng)過的路程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)A(-4,0)的直線l與橢圓C相切于點(diǎn)B,與y軸交于點(diǎn)D(0,2),又橢圓的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)圓Q與直線l相切于點(diǎn)B,且經(jīng)過點(diǎn)F2,求圓Q的方程,并判斷圓Q與圓x2+y2=a2的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,∠BAC=90°,BC=4,延長線段BC至點(diǎn)D,使得BC=4CD,若∠CAD=30°,則AD=$\frac{5\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω>0)圖象的相鄰兩條對稱軸之間的距離為π,且經(jīng)過點(diǎn)($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)
(1)求函數(shù)f(x)的解析式;
(2)若角α滿足f(α)+$\sqrt{3}$f(α-$\frac{π}{2}$)=1,α∈(0,π),求α值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}sinxcosx+{sin^2}$x.
(Ⅰ)求函數(shù)f(x)的遞增區(qū)間;
(Ⅱ)△ABC的角A,B,C所對邊分別是a,b,c,角A的平分線交BC于D,f(A)=$\frac{3}{2}$,AD=$\sqrt{2}$BD=2,求cosC.

查看答案和解析>>

同步練習(xí)冊答案