【題目】設(shè)點(diǎn),直線,點(diǎn)在直線上移動(dòng), 是線段軸的交點(diǎn), .

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)直線軸相交于點(diǎn),過(guò)的直線交軌跡兩點(diǎn),

試探究點(diǎn)與以為直徑的圓的位置關(guān)系,并加以說(shuō)明.

【答案】(1)(2)點(diǎn)在以為直徑的圓上或外

【解析】試題分析:(1)由垂直平分線性質(zhì)將條件轉(zhuǎn)化為.再根據(jù)拋物線定義可得動(dòng)點(diǎn)的軌跡是以為焦點(diǎn), 為準(zhǔn)線的拋物線,最后根據(jù)性質(zhì)求拋物線標(biāo)準(zhǔn)方程(2)直徑AB中點(diǎn)即圓心到直線的距離等于A、B兩點(diǎn)到直線的距離和的一半,而由拋物線定義有A、B兩點(diǎn)到直線的距離和為,因此以為直徑的圓與直線相切,進(jìn)而可判斷點(diǎn)與以為直徑的圓的位置關(guān)系

試題解析:解:(Ⅰ)依題意知: 是線段的垂直平分線.∴是點(diǎn)到直線的距離.∵點(diǎn)在線段的垂直平分線,∴

故動(dòng)點(diǎn)的軌跡是以為焦點(diǎn), 為準(zhǔn)線的拋物線, 其方程為:

(Ⅱ)法一:設(shè)A、B兩點(diǎn)到直線的距離分別為,

直徑AB中點(diǎn)N到直線的距離分別為,

由拋物線定義知, ∴

∴以為直徑的圓與直線相切

法二:

(1)當(dāng)AB垂直軸時(shí),以為直徑的圓點(diǎn)為切點(diǎn),

∴點(diǎn)與以為直徑的圓上

(2)當(dāng)直線軸不垂直時(shí), ∴點(diǎn)與以為直徑的圓外

①當(dāng)直線AB垂直于軸時(shí),易知以為直徑的圓方程為,

點(diǎn)滿足方程,∴點(diǎn)與以為直徑的圓上

②當(dāng)直線軸不垂直時(shí),

設(shè)直線AB方程為 與拋物線交點(diǎn),

聯(lián)立 ,

顯然, 圓直徑

AB中點(diǎn)N的坐標(biāo)(,

,∴點(diǎn)與以為直徑的圓外

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l過(guò)點(diǎn)P(0,2),斜率為k,圓Q:x2+y2﹣12x+32=0.
(1)若直線l和圓相切,求直線l的方程;
(2)若直線l和圓交于A、B兩個(gè)不同的點(diǎn),問(wèn)是否存在常數(shù)k,使得+共線?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為直角坐標(biāo)系的坐標(biāo)原點(diǎn),雙曲線 上有一點(diǎn)),點(diǎn)軸上的射影恰好是雙曲線的右焦點(diǎn),過(guò)點(diǎn)作雙曲線兩條漸近線的平行線,與兩條漸近線的交點(diǎn)分別為, ,若平行四邊形的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝銷售公司進(jìn)行關(guān)于消費(fèi)檔次的調(diào)查,根據(jù)每人月均服裝消費(fèi)額將消費(fèi)檔次分為0-500元;500-1000元;1000-1500元;1500-2000元四個(gè)檔次,針對(duì)兩類人群各抽取100人的樣本進(jìn)行統(tǒng)計(jì)分析,各檔次人數(shù)統(tǒng)計(jì)結(jié)果如下表所示:

0~

500元

500~

1000元

1000~

1500元

1500~

2000元

A類

20

50

20

10

B類

50

30

10

10

月均服裝消費(fèi)額不超過(guò)1000元的人群視為中低消費(fèi)人群,超過(guò)1000元的視為中高收入人群.

(Ⅰ)從類樣本中任選一人,求此人屬于中低消費(fèi)人群的概率;

(Ⅱ)從兩類人群中各任選一人,分別記為甲、乙,估計(jì)甲的消費(fèi)檔次不低于乙的消費(fèi)檔次的概率;

(Ⅲ)以各消費(fèi)檔次的區(qū)間中點(diǎn)對(duì)應(yīng)的數(shù)值為該檔次的人均消費(fèi)額,估計(jì)兩類人群哪類月均服裝消費(fèi)額的方差較大(直接寫(xiě)出結(jié)果,不必說(shuō)明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的圖象為 關(guān)于點(diǎn)對(duì)稱的圖象為, 對(duì)應(yīng)的函數(shù)為

(Ⅰ)求的解析式;

(Ⅱ)若直線只有一個(gè)交點(diǎn),求的值和交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:函數(shù)y=log2(x2﹣2x)的單調(diào)增區(qū)間是[1,+∞),命題q:函數(shù)y=的值域?yàn)椋?,1),下列命題是真命題的為( 。
A.p∧q
B.p∨q
C.p∧(¬q)
D.¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知M={(x,y)|=3},N={(x,y)|ax+2y+a=0}且M∩N=,則a=(  )
A.﹣6或﹣2
B.﹣6
C.2或﹣6
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},從M到N有四種對(duì)應(yīng)如圖所示:

其中能表示為M到N的映射關(guān)系的有(請(qǐng)?zhí)顚?xiě)符合條件的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E:=1(a>b>0)的焦距為2 , 且該橢圓經(jīng)過(guò)點(diǎn)(,).
(Ⅰ)求橢圓E的方程;
(Ⅱ)經(jīng)過(guò)點(diǎn)P(﹣2,0)分別作斜率為k1 , k2的兩條直線,兩直線分別與橢圓E交于M,N兩點(diǎn),當(dāng)直線MN與y軸垂直時(shí),求k1k2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案