直線l過點(-4,0)且與圓(x+1)2+(y-2)2=25交于A,B兩點,如果AB=8,求直線l的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).
(1)試求m的值,使圓C的面積最小;
(2)求與滿足(1)中條件的圓C相切,且過點(1,-2)的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知直線l1、l2分別與拋物線x2=4y相切于點A、B,且A、B兩點的橫坐標分別為a、b(a、b∈R).
(1)求直線l1、l2的方程;
(2)若l1、l2與x軸分別交于P、Q,且l1、l2交于點R,經(jīng)過P、Q、R三點作圓C.
①當a=4,b=-2時,求圓C的方程;
②當a,b變化時,圓C是否過定點?若是,求出所有定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知t∈R,圓C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圓C的圓心在直線x-y+2=0上,求圓C的方程;
(2)圓C是否過定點?如果過定點,求出定點的坐標;如果不過定點,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓M過兩點A(1,-1),B(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設P是直線3x+4y+8=0上的動點,PA′、PB′是圓M的兩條切線,A′、B′為切點,求四邊形PA′MB′面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,
在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0.
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且·=0,求D2+E2-4F的值.
(3)設四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點O,G,H是否共線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓經(jīng)過坐標原點和點,且圓心在軸上.
(1)求圓的方程;
(2)設直線經(jīng)過點,且與圓相交所得弦長為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com