5.已知集合A={x|4≤x≤8},B={x|m+1<x<2m-2},若B⊆A,求實(shí)數(shù)m的取值范圍.

分析 根據(jù)題意需討論B=∅,和B≠∅兩種情況,根據(jù)子集的概念限制m的取值從而得到實(shí)數(shù)m的取值范圍

解答 解:∵集合A={x|4≤x≤8},B={x|m+1<x<2m-2},且B⊆A
∴①當(dāng)B=∅時(shí),則m+1≥2m-2,解得m≤3;
②當(dāng)B≠∅時(shí),則$\left\{\begin{array}{l}m+1≥4\\ 2m-2≤8\end{array}\right.$解得3≤m≤5.
綜上得,實(shí)m的取值范圍為{m|m≤5}.

點(diǎn)評(píng) 考查空集、子集的概念,空集和所有集合的關(guān)系,可借用數(shù)軸求解

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.直線2x+3y-6=0關(guān)于點(diǎn)(1,-1)對(duì)稱(chēng)的直線方程是( 。
A.2x+3y+7=0B.3x-2y+2=0C.2x+3y+8=0D.3x-2y-12=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=log22x-mlog2x+2,其中m∈R.
(1)當(dāng)m=3時(shí),求方程f(x)=0的解;
(2)當(dāng)x∈[1,2]時(shí),求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題“?x∈R,x2+2x-1<0”的否定是( 。
A.?x∈R,x2+2x-1≥0B.?x∈R,x2+2x-1<0C.?x∈R,x2+2x-1≥0D.?x∈R,x2+2x-1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)函數(shù)f(x)=x2-4x+2在區(qū)間[1,4]上的值域?yàn)椋ā 。?table class="qanwser">A.[-1,2]B.(-∞,-1)∪(2,+∞)C.(-2,2)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.對(duì)于函數(shù)f(x)=$\sqrt{a{x^2}+bx}$,存在一個(gè)正數(shù)b,使得f(x)的定義域和值域相同,則非零實(shí)數(shù)a的值為( 。
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.過(guò)點(diǎn)P(2,-1)且與直線y+2x-3=0平行的直線方程是2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.給出下列命題:
①已知集合A={1,a},B={1,2,3},則“a=3”是“A⊆B”的充分不必要條件;
②“x<0”是“l(fā)n(x+1)<0”的必要不充分條件;
③“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的充要條件;
④“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充要條件的“$\overrightarrow{a}$•$\overrightarrow$<0”.
其中正確命題的序號(hào)是①②.(把所有正確命題的序號(hào)都寫(xiě)上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.拋物線y2=6x的焦點(diǎn)到準(zhǔn)線的距離為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案