12.若x,y滿足不等式組$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}$,則z=$\frac{1}{2}$x+y的最小值是( 。
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.3

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,即可得到結(jié)論.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=$\frac{1}{2}$x+y得y=-$\frac{1}{2}$x+z,
平移直線y=-$\frac{1}{2}$x+z,
由圖象可知當(dāng)直線y=-$\frac{1}{2}$x+z經(jīng)過(guò)點(diǎn)C時(shí),直線的截距最小,
此時(shí)z最小,
由$\left\{\begin{array}{l}{x=1}\\{x+y=2}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即C(1,1)
此時(shí)z=$\frac{1}{2}$x+y=$\frac{1}{2}$+1=$\frac{3}{2}$,
故選:B.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.為保障高考的公平性,高考時(shí)每個(gè)考點(diǎn)都要安裝手機(jī)信號(hào)屏蔽儀,要求在考點(diǎn)周圍1千米范圍內(nèi)不能收到手機(jī)信號(hào),檢查員抽查銀川市某考點(diǎn),在距該考點(diǎn)正西方向$\sqrt{3}$千米處,檢查員用手機(jī)接通電話開(kāi)始測(cè)試,并同時(shí)以每小時(shí)12千米的速度從此處沿一條北偏東60°方向的公路行駛,問(wèn)最長(zhǎng)需要多少分鐘檢查員開(kāi)始收不到信號(hào),并至少持續(xù)多長(zhǎng)時(shí)間該考點(diǎn)信號(hào)屏蔽儀才算合格?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知偶函數(shù)f=(x)在區(qū)間[0,+∞)單調(diào)增加,則滿足f(2x-1)≤($\frac{1}{3}$)的x取值范圍是( 。
A.($\frac{1}{3}$,$\frac{2}{3}$)B.[$\frac{1}{3}$,$\frac{2}{3}$]C.($\frac{1}{2}$,$\frac{2}{3}$)D.[$\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某課題主題研究“中學(xué)生數(shù)學(xué)成績(jī)與物理成績(jī)的關(guān)系”,現(xiàn)對(duì)高二年級(jí)800名學(xué)生上學(xué)期期末考試的數(shù)學(xué)和物理成績(jī)按“優(yōu)秀”和“不優(yōu)秀”分類:數(shù)學(xué)和物理成績(jī)都優(yōu)秀的有60人,數(shù)學(xué)成績(jī)優(yōu)秀但物理成績(jī)不優(yōu)秀的有140人,物理成績(jī)優(yōu)秀但數(shù)學(xué)成績(jī)不優(yōu)秀的有100人.
(Ⅰ)請(qǐng)完成下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)概率不超過(guò)0.001的前提下,認(rèn)為該校學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)系?
(Ⅱ)若將上述調(diào)查所得到的頻率視為概率,從全體高二年級(jí)學(xué)生成績(jī)中,有放回地依次隨機(jī)抽取4名學(xué)生的成績(jī),記抽取的4名學(xué)生中數(shù)學(xué)、物理兩科成績(jī)恰有一科“優(yōu)秀”的人數(shù)為X,求X的數(shù)學(xué)期望E(X),
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
 k06.6357.87910.828
2×2列聯(lián)表:
  數(shù)學(xué)優(yōu)秀數(shù)學(xué)不優(yōu)秀  總計(jì)
 物理優(yōu)秀   
 物理不優(yōu)秀   
 總計(jì)   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若不等式ax2+bx-2>0的解集為{x|-2<x<-$\frac{1}{4}$},則a•b的值是36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某種產(chǎn)品的質(zhì)量分為優(yōu)質(zhì)、合格、次品三個(gè)等級(jí),其數(shù)量比例依次為40%,55%,5%.其中優(yōu)質(zhì)品和合格品都能正常使用;而次品無(wú)法正常使用,廠家會(huì)無(wú)理由退貨或更換.
(Ⅰ)小李在市場(chǎng)上購(gòu)買一件這種產(chǎn)品,求此件產(chǎn)品能正常使用的概率;
(Ⅱ)若小李購(gòu)買此種產(chǎn)品3件,設(shè)其中優(yōu)質(zhì)產(chǎn)品件數(shù)為ξ,求ξ的分布列及其數(shù)學(xué)期望E(ξ)和方差D(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.某幾何體的三視圖如圖所示(單位:cm),則該幾何體共有8條棱;該幾何體體積為1cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn,a1=10,an+1=9Sn+10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\left\{\begin{array}{l}{2n-1(n為奇數(shù))}\\{{a}_{n}(n為偶數(shù))}\end{array}\right.$,求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若復(fù)數(shù)z=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i.則$\frac{1}{z}$的共軛復(fù)數(shù)為( 。
A.-1B.1C.z=-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$iD.z=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案