若動圓與圓(x+2)2+y2=4外切,且與直線x=2相切,則動圓圓心的軌跡方程是(    )

A.y2+8x=0           B.y2-8x=0        C.y2-12x+12=0          D.y2+12x-12=0

解析:定義法.動圓圓心到定圓圓心(-2,0)與到直線x=4的距離相等(都是動圓的半徑),∴p=6.

    ∴y2=12(x-1),即選C.

答案:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程是(    )

A.y2=8x                   B.y2=-8x

C.y2=4x                   D.y2=-4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程是

(  )

A.y2=8x                 B.y2=-8x                C.y2=4x          D.y2=-4x

查看答案和解析>>

同步練習冊答案