(本小題滿分12分)如圖,橢圓上的點M與橢圓右焦點的連線與x軸垂直,且OM(O是坐標原點)與橢圓長軸和短軸端點的連線AB平行.

(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是 ,求此時橢圓的方程.
(1);(2).

試題分析:(1)點M與橢圓右焦點的連線與x軸垂直,可得,又,橢圓中,可得;(2)設直線PQ的方程為 ,代入橢圓方程整理得,可得從而解得,可得橢圓的標準方程.
解:(1)易得
(2)令,設直線PQ的方程為 .代入橢圓方程消去x得:,
整理得:

因此a2=50,b2=25,所以橢圓方程為 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>0,b>0)的離心率與雙曲線=1的一條漸近線的斜率相等以原點為圓心,橢圓的短半軸長為半徑的圓與直線sin·x+cos·y-l=0相切(為常數(shù)).
(1)求橢圓C的方程;
(2)若過點M(3,0)的直線與橢圓C相交TA,B兩點,設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A,B兩點.
①若線段AB中點的橫坐標為-,求斜率k的值;
②已知點M(-,0),求證:·為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四棱錐P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD為梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,滿足上述條件的四棱錐的頂點P的軌跡是( 。
A.圓的一部分B.橢圓的一部分
C.球的一部分D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知曲線::的焦點分別為、,點的一個交點,則△的形狀是(   )
A.銳角三角形B.直角三角形C.鈍角三角形D.都有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知△ABC的周長為12,頂點A,B的坐標分別為(-2,0),(2,0),C為動點.
(1)求動點C的軌跡E的方程;
(2)過原點作兩條關于y軸對稱的直線(不與坐標軸重合),使它們分別與曲線E交于兩點,求四點所對應的四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過拋物線的焦點的直線與拋物線交于、兩點,且為坐標原點)的面積為,則=                .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F1、F2為橢圓的兩個焦點,過F1的直線交橢圓于A、B兩點,若,則= _____________.

查看答案和解析>>

同步練習冊答案