(本題滿分12分)
在銳角中,分別為角的對邊,且.
(1)求角A的大;
(2)求的最大值.
(1);(2)
【解析】
試題分析:本題主要考查兩角和與差的正弦公式、二倍角公式、誘導(dǎo)公式、三角函數(shù)最值等基礎(chǔ)知識,考查運(yùn)用三角公式進(jìn)行三角變換的能力和計(jì)算能力.第一問,利用三角形的內(nèi)角和為轉(zhuǎn)化,用誘導(dǎo)公式、降冪公式、倍角公式化簡表達(dá)式,得到關(guān)于的方程,解出的值,通過的正負(fù)判斷角是銳角還是鈍角;第二問,將角用角表示,利用兩角和與差的正弦公式化簡,由于角和角都是銳角,所以得到角的取值范圍,代入到化簡的表達(dá)式中,得到函數(shù)的最小值.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032605162595719760/SYS201403260516538165768476_DA.files/image008.png">,所以,
所以由已知得,變形得,
整理得,解得.
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032605162595719760/SYS201403260516538165768476_DA.files/image005.png">是三角形內(nèi)角,所以. 5分
(Ⅱ)
. 9分
當(dāng)時(shí),取最大值. 12分
考點(diǎn):1.誘導(dǎo)公式;2.降冪公式;3.倍角公式;4.兩角和與差的正弦公式;5.三角函數(shù)的最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com