設橢圓C:數(shù)學公式(a>b>0)的一個頂點坐標為A(數(shù)學公式),且其右焦點到直線數(shù)學公式的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(數(shù)學公式),求證點M的所有“相關弦”的中點在同一條直線上;
(3)根據(jù)解決問題(2)的經驗與體會,請運用類比、推廣等思想方法,提出一個與“相關弦”有關的具有研究價值的結論,并加以解決.(本小題將根據(jù)所提出問題的層次性給予不同的分值)

解:(1),
根據(jù)右焦點到直線的距離為3,可得,∴a=2
∴橢圓C的標準方程:
(2)設A(x1,y1),B(x2,y2),中點為P0(x0,y0,
由于,所以(Ⅰ)
則x12+2y12①x22+2y22②.
由①②兩式相減得:x12-x22+2y12-2y22=0
即(x1-x2)(x1+x2)+2(y1-y2)(y1+y2)=0(Ⅱ)
由(Ⅰ),(Ⅱ)得:x0=1
因此:點M的所有“相關弦”的中點在同一條直線x=1上.
(3)橢圓到一般,點到一般
若A、B是橢圓(a>b>0))上的不同兩點.弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(t,0),當時,證明:點M的所有“相關弦”的中點在同一條直線上.
分析:(1)根據(jù)橢圓的焦點在x軸上,可知),根據(jù)右焦點到直線的距離為3,可得,從而可求a=2,故可得橢圓C的軌跡方程;
(2))設A(x1,y1),B(x2,y2),中點為P0(x0,y0,
由于,所以,利用點在橢圓上,有(x1-x2)(x1+x2)+2(y1-y2)(y1+y2)=0,由此能導出點M的所有“相關弦”的中點在同一條直線x=1上.
(3)橢圓到一般,點到一般即可得結論:若A、B是橢圓(a>b>0))上的不同兩點.弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(t,0),當時,證明:點M的所有“相關弦”的中點在同一條直線上.
點評:本題的考點是直線與圓錐曲線的綜合問題,主要考查橢圓標準方程的求解,考查點差法,同時考查學生探究能力,有一定的難度.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015屆廣東肇慶高二上學期期末質量檢測文科數(shù)學卷(解析版) 題型:選擇題

設橢圓C:(a>b>0)的左、右焦點分別為F1、F2,P是C上的點,,,則C的離心率為(   )

A.          B.          C.     D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆黑龍江省高二上學期期末考試文科數(shù)學 題型:解答題

(12分)

設橢圓C:(a>b>0)過點(0,4),離心率為

(1)   求C的方程。

(2)   求過點(3,0)且斜率為 的直線被橢圓C所截線段的中點坐標。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省高考真題 題型:解答題

設橢圓C:(a>b>0)過點(0,4),離心率為,
(Ⅰ)求C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的中點坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:天津模擬題 題型:解答題

設橢圓C:(a>b>0) 的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且,
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過A,Q,F(xiàn)2三點的圓恰好與直線l:相切,求橢圓C的方程:
(Ⅲ)在(Ⅱ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M,N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年上海市崇明縣高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

設橢圓C:(a>b>0)的一個頂點坐標為A(),且其右焦點到直線的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(),求證:點M的所有“相關弦”的中點在同一條直線上;
(3)對于問題(2),如果點M坐標為M(t,0),當t滿足什么條件時,點M(t,0)存在無窮多條“相關弦”,并判斷點M的所有“相關弦”的中點是否在同一條直線上.

查看答案和解析>>

同步練習冊答案