已知a,b是異面直線,則下面四個命題:
①過直線a至少有一個平面平行于b;
②在空間中至少有一個平面分別與a,b都平行;
③在空間中至多有一條直線與a,b都相交.
其中正確命題的個數(shù)是( 。
A、0B、1C、2D、3
考點:命題的真假判斷與應(yīng)用
專題:空間位置關(guān)系與距離
分析:利用結(jié)論:對于a,b是異面直線,則存在唯一一對平面α∥β,使得a?α,a∥β,b?β,b∥α.即可判斷出.
解答: 解:對于a,b是異面直線,則存在唯一一對平面α∥β,使得a?α,a∥β,b?β,b∥α.
由上述的結(jié)論可知:①過直線a有且僅有一個平面平行于b,因此①不正確;
②在空間中至少有一個平面分別與a,b都平行,正確,因為與平面α平行的平面有無數(shù)個;
③在空間中可有無數(shù)條直線與a,b都相交,因此不正確.
綜上可知:只有②正確.
故選:B.
點評:本題考查了關(guān)于異面直線的一個重要結(jié)論,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=cos(x-
π
2
)
是奇函數(shù);
②若α、β是第一象限角,且α<β,則tanα<tanβ;
③將函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
3
個單位長度得到y(tǒng)=3sin2x;
④若x∈(0,
π
2
)
,則函數(shù)y=3sin(2x+
π
3
)
的值域為(-
3
3
2
,3]

則其中正確命題序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
(1)函數(shù)y=
1
x
+x(x<0)
的值域是(-∞,-2];
(2)函數(shù)y=x2+2+
1
x2+2
最小值是2;
(3)若a,b同號且a≠b,則
a
b
+
b
a
>2

其中正確的命題是( 。
A、(1)(2)(3)
B、(1)(2)
C、(2)(3)
D、(1)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等比數(shù)列{an}的前n項積為Πn,若a4•a5=2,則Π8=( 。
A、256B、81C、16D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一算法的程序框圖如右圖所示,若輸出的y=
1
2
,則輸入的x可能為(  )
A、-1B、0C、1D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,該程序運行后輸出的k的值是( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓:
y2
a2
+
x2
b2
=1
(a>b>0)的離心率e=
3
2
,橢圓左右頂點分別為A、B,且A到橢圓兩焦點的距離之和為4.設(shè)P為橢圓上不同于A、B的任一點,作PQ⊥x軸,Q為垂足.M為線段PQ中點,直線AM交直線l:x=b于點C,D為線段BC中點(如圖).
(Ⅰ)求橢圓的方程;
(Ⅱ)試判斷O、B、D、M四點是否共圓,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點為F(1,0),點A(2,0)在橢圓C上,過F點的直線l與橢圓C交于不同兩點M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l斜率為1,求線段MN的長;
(Ⅲ)設(shè)線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=2x與拋物線C:y=
1
4
x2
交于A(xA,yA)、O(0,0)兩點,過點O與直線l垂直的直線交拋物線C于點B(xB,yB).如圖所示.
(1)求拋物線C的焦點坐標;
(2)求經(jīng)過A、B兩點的直線與y軸交點M的坐標;
(3)過拋物線y=
1
4
x2
的頂點任意作兩條互相垂直的直線,過這兩條直線與拋物線的交點A、B的直線AB是否恒過定點,如果是,指出此定點,并證明你的結(jié)論;如果不是,請說明理由.

查看答案和解析>>

同步練習冊答案