11.算法流程圖如圖所示,其輸出結果是127.

分析 由題意按照循環(huán),找出規(guī)律,判斷最后循環(huán)時的a值,求出輸出的結果即可.

解答 解:a的取值依次構成一個數(shù)列,且滿足a1=1,an+1=2an+1,則求第一個大于100的an值,寫出這個數(shù)列1,3,7,15,31,63,127,…,故有結果為127.
故答案為:127.

點評 本小題考查流程圖的相關知識,解題的關鍵在于理解算法的功能.考查計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.若關于x的不等式|x+1|-|x-2|<a2-4a有實數(shù)解,則實數(shù)a的取值范圍是( 。
A.a<1或a>3B.a>3C.a<1D.1<a<3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球.乙箱子里裝有1個白球、2個黑球.每次游戲從這兩個箱子里隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結束后將球放回原箱)
(1)求在1次游戲結束后,?①摸出3個白球的概率??②獲獎的概率?
(2)求在2次游戲中獲獎次數(shù)X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設an=-n2+9n+10,則數(shù)列{an}前n項和最大值n的值為( 。
A.4B.5C.9或10D.4或5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設函數(shù)f(x)=xekx(k>0),若函數(shù)f(x)在區(qū)間(-1,1)內單調遞增,k的取值范圍[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某個體服裝店經(jīng)營某種服裝,在某周內獲利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關系如下表
x3456789
y66697381899091
(參考數(shù)值:$\sum_{i=1}^{7}$xiyi=3487,$\sum_{i=1}^{7}$xi2=280)
(1)求$\overline{x}$、$\overline{y}$
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程y=$\widehat$x+$\widehat{a}$;(精確到0.01)
(3)若該周內某天銷售服裝20件,估計可獲利多少元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.閱讀如圖所示的程序框圖,運行相應的程序,輸出的S值為-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an},{cn}滿足條件:${a_1}=1,{a_{n+1}}=2{a_n}+1,{c_n}=\frac{1}{(2n+1)(2n+3)}$.
(1)求證數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{cn}的前n項和Tn,并求使得${a_m}>\frac{1}{T_n}$對任意n∈N+都成立的正整數(shù)m的最小值.

查看答案和解析>>

同步練習冊答案