甲、乙、丙三臺機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺機(jī)床加工的零件是一等品的概率為。

     (1)分別求甲、乙、丙三臺各自加工的零件是一等品的概率;

     (2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率。

(1)設(shè)A、B、C分別為甲、乙、丙三臺機(jī)床各自加工的零件是一等品的事件,由題設(shè)條件有,即

P(B)[1-P(C)]=,P(A)·P(C)=

解得P(A)=,P(B)=,P(C)=,即甲、乙、丙三臺機(jī)床各自加工的零件是一等品的概率分別是,,

    (2)記D為從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的事件,則P(D)=1-P(D)=1-[1-P(A)][1-P(B)][1-P(C)]=1-××=。

故從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的概率為。


解析:

本題考查相互獨(dú)立事件同時發(fā)生或互斥事件有一個發(fā)生的概率的計算方法,考查運(yùn)用概率知識解決問題的能力。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三臺機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為
1
4
,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為
1
12
,甲、丙兩臺機(jī)床加工的零件都是一等品的概率為
2
9

(Ⅰ)分別求甲、乙、丙三臺機(jī)床各自加工零件是一等品的概率;
(Ⅱ)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三臺機(jī)床各自獨(dú)立的加工同一種零件,已知甲、乙、丙三臺機(jī)床加工的零件是一等品的概率分別為0.7、0.6、0.8,乙、丙兩臺機(jī)床加工的零件數(shù)相等,甲機(jī)床加工的零件數(shù)是乙機(jī)床加工的零件數(shù)的二倍.?
(1)從甲、乙、丙加工的零件中各取一件檢驗,求至少有一件一等品的概率;?
(2)將三臺機(jī)床加工的零件混合到一起,從中任意的抽取一件檢驗,求它是一等品的概率;
(3)將三臺機(jī)床加工的零件混合到一起,從中任意的抽取4件檢驗,其中一等品的個數(shù)記為X,求EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三臺機(jī)床各自獨(dú)立的加工同一種零件,已知甲、乙、丙三臺機(jī)床加工的零件是一等品的概率分別為0.7、0.6、0.8,乙、丙兩臺機(jī)床加工的零件數(shù)相等,甲機(jī)床加工的零件數(shù)是乙機(jī)床加工的零件數(shù)的二倍.?
(1)從甲、乙、丙加工的零件中各取一件檢驗,求至少有一件一等品的概率;?
(2)將三臺機(jī)床加工的零件混合到一起,從中任意的抽取一件檢驗,求它是一等品的概率;
(3)將三臺機(jī)床加工的零件混合到一起,從中任意的抽取4件檢驗,求一等品的個數(shù)不少于3個的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年湖南卷)(12分)

甲、乙、丙三臺機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、乙兩臺機(jī)床加工的零件是一等品的概率為

(Ⅰ)分別求甲、乙、丙三臺機(jī)床各自加工的零件是一等品的概率;

(Ⅱ)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率。

查看答案和解析>>

同步練習(xí)冊答案