分析 (1)設(shè)$2x=t,則x=\frac{t}{2}$,結(jié)合f(2x)=3x2+1,可得:函數(shù)f(x)的解析式;
(2)根據(jù)函數(shù)奇偶性的定義,可判斷函數(shù)f(x)的奇偶性;
(3)求導(dǎo),分析導(dǎo)函數(shù)的符號,可得:函數(shù)f(x)在[-3,6]上的單調(diào)性.
解答 解:(1)設(shè)$2x=t,則x=\frac{t}{2}$
因?yàn)閒(2x)=3x2+1,所以$f(t)=3{(\frac{t}{2})^2}+1=\frac{3}{4}{t^2}+1$,
所以$f(x)=\frac{3}{4}{x^2}+1$…5
(2)由函數(shù)f(x)的定義域R關(guān)于原點(diǎn)對稱,
又由$f(-x)=\frac{3}{4}{(-x)^2}+1=\frac{3}{4}{x^2}+1=f(x)$
所以函數(shù)f(x)為偶函數(shù) …10
(3)∵$f′(x)=\frac{3}{2}x$,
當(dāng)x∈[-3,0]時(shí),f′(x)≤0恒成立;
當(dāng)x∈[0,6]時(shí),f′(x)≥0恒成立;
故函數(shù)f(x)在[-3,0]為減函數(shù),在[0,6]為增函數(shù)
(注:未說明理由的得2分) …16
點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)解析式的求法,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的奇偶性,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 4 | 5 |
y | 2 | 3 | 4 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | b<a<c | C. | c<a<b | D. | a<b<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 10 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com