【題目】已知圓為參數(shù)和直線 其中為參數(shù), 為直線的傾斜角.

(1)當時,求圓上的點到直線的距離的最小值;

(2)當直線與圓有公共點時,求的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:1)圓、直線化為直角坐標方程,求出圓心到直線的距離,再根據(jù)圓上點到直線的距離最小值一般為圓心到直線的距離減半徑可得結果;(2把圓的參數(shù)方程化為直角坐標方程,把直線的參數(shù)代入圓方程根據(jù)判別式大于零求出傾斜角 的范圍.

試題解析:(1)當時,直線的直角坐標方程為,圓

圓心坐標為(1,0),圓心到直線的距離,圓的半徑為1,故圓

上的點到直線的距離的最小值為

(2)圓的直角坐標方程為,將直線的參數(shù)方程代入圓的直

角坐標方程,得,這個關于的一元二次方程有解,

,則,即

.又,故只能有,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某商場計劃銷售某種產品,現(xiàn)邀請生產該產品的甲、乙兩個廠家進場試銷10天,兩個廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產品廠家再返利2元;乙廠家無固定返利,賣出40件以內(含40件)的產品,每件產品廠家返利4元,超出40件的部分每件返利6元.經統(tǒng)計,兩個廠家10天的試銷情況莖葉圖如下:

(Ⅰ)現(xiàn)從廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;

(Ⅱ)若將頻率視作概率,回答以下問題:

(。┯浺覐S家的日返利額為(單位:元),求的分布列和數(shù)學期望;

(ⅱ)商場擬在甲、乙兩個廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學的統(tǒng)計學知識為商場做出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b)滿足f(x0)= ,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.若函數(shù)f(x)=﹣x2+mx+1是[﹣1,1]上的平均值函數(shù),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的有(
①命題x∈R,使sin x+cos x= 的否定是“對x∈R,恒有sin x+cos x≠ ”;
②“a≠1或b≠2”是“a+b≠3”的充要條件;
③若曲線C上的所有點的坐標都滿足方程f(x,y)=0,則稱方程f(x,y)=0是曲線C的方程;
④十進制數(shù)66化為二進制數(shù)是1 000 0102
A.①②③④
B.①④
C.②③
D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AC是圓O的直徑,點B在圓O上, , ,

(1)證明:

(2) 求平面所成的銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中, , ,四邊形為矩形,且平面, .

(1)求證: 平面

(2)點在線段(含端點)上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求過點且與曲線相切的直線方程;

(Ⅱ)設,其中為非零實數(shù),若有兩個極值點,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的左、右焦點分別為, ,點在橢圓.

(1)求橢圓的標準方程;

2)是否存在斜率為2的直線,使得當直線與橢圓有兩個不同交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 , ,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上的“雙中值函數(shù)”,則實數(shù)a的取值范圍是( 。
A.(,
B.(,3)
C.( , 1)
D.( , 1)

查看答案和解析>>

同步練習冊答案