【題目】如圖,在中,分別為的中點(diǎn),為的一個(gè)三等分點(diǎn)(靠近點(diǎn)).將沿折起,記折起后點(diǎn)為,連接為上的一點(diǎn),且,連接.
(1)求證:平面;
(2)若,直線與平面所成的角為,當(dāng)最大時(shí),求,并計(jì)算.
【答案】(1)見解析;(2),
【解析】
(1)先根據(jù)平行線分線段成比例證得,再根據(jù)線面平行的判定定理證平面;
(2)根據(jù)線面位置關(guān)系建立空間直角坐標(biāo)系,利用向量法進(jìn)行求解即可.
(1)在中,因?yàn)?/span>為的三等分點(diǎn)(靠近點(diǎn)),為的中點(diǎn),
所以.
又分別為的中點(diǎn),所以,
所以,所以,
所以,所以.
又平面平面,所以平面.
(2)易知,所以以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,則,,
連接,由,可得,
則.
設(shè)為平面的法向量,
則,即,所以,
令,則,所以是平面的一個(gè)法向量.
所以,
所以當(dāng)時(shí),取最大值,也取最大值,此時(shí),則,故.
所以當(dāng)最大時(shí),,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若不等式恒成立,求的最小值(其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,∥,,是等邊三角形,側(cè)面底面,,,,點(diǎn)是棱上靠近點(diǎn)的一個(gè)三等分點(diǎn).
(1)求證:∥平面;
(2)設(shè)點(diǎn)是線段(含端點(diǎn))上的動點(diǎn),若直線與底面所成的角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中ABC—A1B1C1,ABAC,AB=3,AC=4,B1CAC1.
(1)求AA1的長;
(2)試判斷在側(cè)棱BB1上是否存在點(diǎn)P,使得直線PC與平面AA1C1C所成角和二面角B—A1C—A的大小相等,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖(如圖①)、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖(如圖②),則下列結(jié)論中不一定正確的是( )
注:90后指1990年及以后出生,80后指1980~1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了釋放學(xué)生壓力,某校高三年級一班進(jìn)行了一個(gè)投籃游戲,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置上,甲先投,每人投一次籃,兩人有人命中,命中者得分,未命中者得分;兩人都命中或都未命中,兩人均得分.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.
(1)經(jīng)過輪投籃,記甲的得分為,求的分布列及期望;
(2)若經(jīng)過輪投籃,用表示第輪投籃后,甲的累計(jì)得分低于乙的累計(jì)得分的概率.
①求;
②規(guī)定,經(jīng)過計(jì)算機(jī)模擬計(jì)算可得,請根據(jù)①中值求出的值,并由此求出數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知,,、分別為、的中點(diǎn),將沿折起,得到四棱錐,為的中點(diǎn).
(1)證明:平面;
(2)當(dāng)正視圖方向與向量的方向相同時(shí),的正視圖為直角三角形,求此時(shí)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上任意一點(diǎn),當(dāng)時(shí),的面積為,且.
(1)求橢圓的方程;
(2)已知直線經(jīng)點(diǎn),與橢圓交于不同的兩點(diǎn)、,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:a=1時(shí),f(x)+g(x)﹣(1)lnx>e.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com