(幾何證明選講)如圖,點(diǎn)A、B、C都在⊙O上,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若AB=5,BC=3,CD=6,則線段AC的長為   
【答案】分析:根據(jù)圓的切線和割線,利用切割線定理得到與圓有關(guān)的比例線段,代入已知線段的長度求出DB的長,根據(jù)三角形的兩個(gè)角對(duì)應(yīng)相等,得到兩個(gè)三角形全等,對(duì)應(yīng)線段成比例,得到要求的線段的長度.
解答:解:∵過點(diǎn)C的切線交AB的延長線于點(diǎn)D,
∴DC是圓的切線,DBA是圓的割線,
根據(jù)切割線定理得到DC2=DB•DA,
∵AB=5,CD=6,
∴36=DB(DB+5)
∴DB=4,
由題意知∠D=∠D,∠BCD=∠A
∴△DBC∽△DCA,

∴AC==4.5,
故答案為:4.5
點(diǎn)評(píng):本題考查與圓有關(guān)的比例線段,考查三角形的相似的判定定理與性質(zhì)定理,本題解題的關(guān)鍵是根據(jù)圓中的比例式,代入已知線段的長度求出未知的線段的長度,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-1:幾何證明選講)
如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,∠ABC=60°,PD=1,BD=8,求線段BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講)如圖,AB、CD是圓O的兩條弦,且AB是線段CD的中垂線,已知AB=10,CD=8,則線段AC的長度為
4
5
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)幾何證明選講:如圖,CB是⊙O的直徑,AP是⊙O的切線,A為切點(diǎn),AP與CB的延長線交于點(diǎn)P,若PA=8,PB=4,求AC的長度.
(2)坐標(biāo)系與參數(shù)方程:在極坐標(biāo)系Ox中,已知曲線C1:ρcos(θ+
π
4
)
=
2
2
與曲線C2;ρ=1相交于A、B兩點(diǎn),求線段AB的長度.
(3)不等式選講:解關(guān)于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講.
如圖,AB是⊙O的一條切線,切點(diǎn)為B,ADE、CFD、CGE都是⊙O的割線,已知AC=AB.證明:
(1)AD•AE=AC2
(2)FG∥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(幾何證明選講)如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,CD⊥AB,垂足為D,且AD=5DB,設(shè)∠COD=θ,則tanθ的值為
5
2
5
2

(2)(坐標(biāo)系與參數(shù)方程)圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ,則經(jīng)過兩圓圓心的直線的直角坐標(biāo)方程為
x-y-2=0
x-y-2=0

(3)(不等式選講)若不等式|3x-b|<4的解集中的整數(shù)有且僅有0,1,2,則b的取值范圍是
(2,4)
(2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案