如圖,在三棱柱中, ,,,點(diǎn)是的中點(diǎn),.
(Ⅰ)求證:∥平面;
(Ⅱ)設(shè)點(diǎn)在線段上,,且使直線和平面所成的角的正弦值為,求的值.
(Ⅰ)連接交于點(diǎn),連接,得到∥,進(jìn)一步可得∥平面.
(Ⅱ)。
【解析】
試題分析:(Ⅰ)證明:在三棱柱中,
連接交于點(diǎn),連接,則是的中點(diǎn)
在中,點(diǎn)是的中點(diǎn),
所以∥,
又,,
所以∥平面. (5分)
(Ⅱ)在中,,,點(diǎn)是的中點(diǎn)
所以,又,是平面內(nèi)的相交直線,
所以平面,可知. (7分)
又,是平面內(nèi)的相交直線,交點(diǎn)是D,
知平面. 平面
在三棱柱中,為線段上的點(diǎn),
過分別作于點(diǎn),于點(diǎn),連接
由平面,,得
又,、是平面內(nèi)的相交直線
所以平面,
是在平面內(nèi)的射影,
是直線和平面所成的角. (12分)
設(shè),由得,
可得,
所以在中,, 解得 (14分)
考點(diǎn):三棱柱的幾何特征,平行關(guān)系,垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):中檔題,立體幾何問題中,平行關(guān)系、垂直關(guān)系,角、距離、面積、體積等的計(jì)算,是常見題型,基本思路是將空間問題轉(zhuǎn)化成為平面問題,利用平面幾何知識(shí)加以解決。要注意遵循“一作,二證,三計(jì)算”。利用“向量法”,通過建立空間直角坐標(biāo)系,往往能簡化解題過程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試數(shù)學(xué)(江蘇卷解析版) 題型:填空題
如圖,在三棱柱中,,,分別為,,的中點(diǎn),設(shè)三棱錐體積為,三棱柱的體積為,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省?谑懈呷呖颊{(diào)研考試?yán)砜茢?shù)學(xué) 題型:選擇題
如圖,在三棱柱中,側(cè)棱垂直于底面,底面是邊長為2的正三角形,側(cè)棱長為3,則與平面所成的角是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省高二上學(xué)期八校聯(lián)考理科數(shù)學(xué) 題型:填空題
如圖,在三棱柱中,側(cè)面,且與底面成角,,則該棱柱體積的 最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省高一下學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)如圖,在三棱柱中,面,,,分別為,的中點(diǎn).
(1)求證:∥平面; (2)求證:平面;
(3)直線與平面所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com