【題目】已知球是正三棱錐(底面為正三角形,頂點(diǎn)在底面的射影為底面中心)的外接球,,,點(diǎn)在線段上,且,過點(diǎn)作球的截面,則所得截面圓面積的取值范圍是( )

A. B. C. D.

【答案】B

【解析】

先利用等邊三角形中心的性質(zhì),結(jié)合勾股定理計(jì)算得球的半徑,過的最大截面是經(jīng)過球心的截面,可由球的半徑計(jì)算得出.最小的截面是和垂直的截面,先計(jì)算得的長度,利用勾股定理計(jì)算得這個(gè)截面圓的半徑,由此計(jì)算得最小截面的面積.

畫出圖象如下圖所示,其中是球心,是等邊三角形的中心.根據(jù)等邊三角形中心的性質(zhì)有,,設(shè)球的半徑為,在三角形中,由勾股定理得,即,解得,故最大的截面面積為.在三角形中,,由余弦定理得.在三角形中,,且垂直的截面圓的半徑,故最小的截面面積為.綜上所述,本小題選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計(jì)了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序號(hào)

1

2

3

4

5

6

7

8

9

10

工業(yè)增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

5.5

20.6

82.5

211.52

129.6

(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對(duì)工業(yè)增加值(萬億元)與年份序號(hào)的回歸方程類型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請計(jì)算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).

(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計(jì)值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);

(3)預(yù)測到哪一年的工業(yè)增加值能突破30萬億元大關(guān).

附:樣本 的相關(guān)系數(shù),

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201912月份,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會(huì)出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了增強(qiáng)居民防護(hù)意識(shí),增加居民防護(hù)知識(shí),某居委會(huì)利用網(wǎng)絡(luò)舉辦社區(qū)線上預(yù)防新冠肺炎知識(shí)答題比賽,所有居民都參與了防護(hù)知識(shí)網(wǎng)上答卷,最終甲、乙兩人得分最高進(jìn)入決賽,該社區(qū)設(shè)計(jì)了一個(gè)決賽方案:①甲、乙兩人各自從個(gè)問題中隨機(jī)抽個(gè).已知這個(gè)問題中,甲能正確回答其中的個(gè),而乙能正確回答每個(gè)問題的概率均為,甲、乙兩人對(duì)每個(gè)問題的回答相互獨(dú)立、互不影響;②答對(duì)題目個(gè)數(shù)多的人獲勝,若兩人答對(duì)題目數(shù)相同,則由乙再從剩下的道題中選一道作答,答對(duì)則判乙勝,答錯(cuò)則判甲勝.

1)求甲、乙兩人共答對(duì)個(gè)問題的概率;

2)試判斷甲、乙誰更有可能獲勝?并說明理由;

3)求乙答對(duì)題目數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點(diǎn)處的切線方程為.

1)求函數(shù)的解析式;

2)若對(duì)任意,不等式恒成立,求正整數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年春晚都是萬眾矚目的時(shí)刻,這些節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等反映了社會(huì)的進(jìn)步.國家的富強(qiáng),人民生活水平的提高等.某學(xué)校高三年級(jí)主任開學(xué)初為了解學(xué)生在看春晚后對(duì)節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等是否會(huì)在今年的高考題中體現(xiàn)進(jìn)行過思考,特地隨機(jī)抽取100名高三學(xué)生(其中文科學(xué)生50,理科學(xué)生50名),進(jìn)行了調(diào)查.統(tǒng)計(jì)數(shù)據(jù)如表所示(不完整):

“思考過”

“沒有思考過”

總計(jì)

文科學(xué)生

40

10

理科學(xué)生

30

總計(jì)

100

(1)補(bǔ)充完整所給表格,并根據(jù)表格數(shù)據(jù)計(jì)算是否有的把握認(rèn)為看春晚后會(huì)思考節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等與文理科學(xué)生有關(guān);

(2)①現(xiàn)從上表的”思考過”的文理科學(xué)生中按分層抽樣選出7人.再從這7人中隨機(jī)抽取4人,記這4人中“文科學(xué)生”的人數(shù)為,試求的分布列與數(shù)學(xué)期望;

②現(xiàn)設(shè)計(jì)一份試卷(題目知識(shí)點(diǎn)來自春晚相關(guān)知識(shí)整合與變化),假設(shè)“思考過”的學(xué)生及格率為,“沒有思考過”的學(xué)生的及格率為.現(xiàn)從“思考過”與“沒有思考過”的學(xué)生中分別隨機(jī)抽取一名學(xué)生進(jìn)行測試,求兩人至少有一個(gè)及格的概率.

附參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是的導(dǎo)函數(shù)的圖象,對(duì)于下列四個(gè)判斷,其中正確的判斷是( .

A.上是增函數(shù);

B.當(dāng)時(shí),取得極小值;

C.上是增函數(shù)、在上是減函數(shù);

D.當(dāng)時(shí),取得極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)產(chǎn)值在2008年~2017年的年增量(即當(dāng)年產(chǎn)值比前一年產(chǎn)值增加的量)統(tǒng)計(jì)圖如圖所示(單位:萬元),下列說法正確的是( )

A. 2009年產(chǎn)值比2008年產(chǎn)值少

B. 從2011年到2015年,產(chǎn)值年增量逐年減少

C. 產(chǎn)值年增量的增量最大的是2017年

D. 2016年的產(chǎn)值年增長率可能比2012年的產(chǎn)值年增長率低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求的單調(diào)區(qū)間;

2)當(dāng)時(shí),若對(duì),都有)成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交、.為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.

1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);

2)求證:.

查看答案和解析>>

同步練習(xí)冊答案