求證:a2+b2-ab≥a+b-1.
考點(diǎn):不等式的證明
專題:證明題,不等式的解法及應(yīng)用
分析:運(yùn)用基本不等式可得a2+b2≥2ab,a2+1≥2a,b2+1≥2b,把以上三個(gè)式子相加,可得結(jié)論.
解答: 證明:∵a2+b2≥2ab,a2+1≥2a,b2+1≥2b,
∴把以上三個(gè)式子相加得:2(a2+b2+1)≥2(ab+a+b)
∴a2+b2+1≥ab+a+b,即a2+b2-ab≥a+b-1.
點(diǎn)評(píng):本題考查不等式的證明,考查基本不等式的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知存在正實(shí)數(shù)a,b,c滿足
1
e
c
a
≤2,clnb+clna=a+clnc,則lnb的取值范圍是( 。
A、[1,
1
2
+ln2]
B、[1,+∞)
C、(-∞,e-1]
D、[1,e-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞減,則滿足f(2x-1)≥f(1)的x取值范圍是(  )
A、[0,1]
B、[1,+∞)
C、(-∞,0]
D、(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量X等可能地取值1,2,3,…,10,則P(X<6)的值為(  )
A、0.3B、0.5
C、0.6D、0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上單調(diào)遞減的奇函數(shù),則滿足不等式f[f(t-1)]<0的實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若焦距為4的雙曲線的兩條漸近線互相垂直,則此雙曲線的實(shí)軸長為( 。
A、4
2
B、2
2
C、4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某袋中有10個(gè)乒乓球,其中有7個(gè)新、3個(gè)舊球,從袋中任取3個(gè)來用,用后放回袋中(新球用后變?yōu)榕f球),記此時(shí)袋中舊球個(gè)數(shù)為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F2作雙曲線C的一條漸近線的垂線,垂足為H,交雙曲線于點(diǎn)M且
F2M
=2
MH
,則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

退休年齡延遲是平均預(yù)期壽命延長和人口老齡化背景下的一種趨勢(shì).某機(jī)構(gòu)為了解某城市市民的年齡構(gòu)成,從該城市市民中隨機(jī)抽取年齡段在20~80歲(含20歲和80歲)之間的600人進(jìn)行調(diào)查,并按年齡層次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]繪制頻率分布直方圖,如圖所示.若規(guī)定年齡分布在[20,40)歲的人為“青年人”,[40,60)為“中年人”,[60,80]為“老年人”.

(Ⅰ)若每一組數(shù)據(jù)的平均值用該區(qū)間中點(diǎn)值來代替,試估算所調(diào)查的600人的平均年齡;
(Ⅱ)將上述人口分布的頻率視為該城市在20-80年齡段的人口分布的概率.從該城市20-80年齡段市民中隨機(jī)抽取3人,記抽到“老年人”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案