9.f(x)為R上奇函數(shù),當x≥0時,f(x)=x+1,則當x<0時,f(x)=x-1.

分析 利用f(x)為R上奇函數(shù),f(-x)=-f(x),當x≥0時,f(x)=x+1,可求x<0的解析式.

解答 解:由題意,函數(shù)f(x)為R上奇函數(shù),f(-x)=-f(x),
當x≥0時,f(x)=x+1,
當x<0時,則-x>0,那么f(-x)=-x+1.
∵f(-x)=-f(x),
∴f(x)=x-1,
故答案為:x-1,

點評 本題考查了函數(shù)的性質的運用,利用了函數(shù)是奇函數(shù)這性質.比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$的部分圖象如圖所示.
(Ⅰ)  求函數(shù)f(x)的解析式;
(Ⅱ)  若f($\frac{α}{2}$)=$\frac{4}{5}$,求sin($\frac{5π}{6}$-α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知不共線向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角是$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知cosα=$\frac{4}{5}$,cos(α+β)=$\frac{3}{5}$,且α,β均為銳角,求cos β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{{{x^2}+m}}{x}$,且f(1)=2,
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在(0,1]的增減性,并用單調性定義證明之;
(3)若f(k)>2,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,b=35,c=20,C=30°,則此三角形解的情況是( 。
A.兩解B.一解C.一解或兩解D.無解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知數(shù)列{an}滿足${a_1}=2,{a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}(n∈N*)$,則該數(shù)列的前2017項的乘積a1a2a3…a2017=( 。
A.2B.$\frac{1}{3}$C.-$\frac{1}{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,AD=2BC,過 A1,C,D三點的平面記為α,BB1與α的交點為Q.
(1)證明:Q為BB1的中點;
(2)若A1A=4,CD=2,梯形 ABCD的面積為6,求平面α與底面ABCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x2ex
(1)求f(x)在(-∞,0)上的最大值;
(2)若函數(shù)f(x)在(-1,+∞)上的最小值為m,當x>0時,試比較$m-\frac{1}{2}$與lnx-2x+1的大小.

查看答案和解析>>

同步練習冊答案