在等差數(shù)列{an}中,a16a17a18a9=-36,其前n項(xiàng)和為Sn.
(1)求Sn的最小值,并求出Sn取最小值時(shí)n的值;
(2)求Tn=|a1|+|a2|+…+|an|.

(1)當(dāng)n=20或21時(shí),Sn取最小值且最小值為-630
(2)Tn

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S3=0,S5=-5.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,
(1)判斷數(shù)列是否是等差數(shù)列,并說明理由;
(2)如果,試寫出數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,若數(shù)列得前n項(xiàng)和為,問是否存在這樣的實(shí)數(shù),使當(dāng)且僅當(dāng)時(shí)取得最大值。若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且對(duì)任意正整數(shù)n,點(diǎn)(an+1Sn)在直線3x+2y-3=0上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,求出λ的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}滿足a1>0,an+1=2-|an|,n∈N*
(1)若a1,a2,a3成等比數(shù)列,求a1的值;
(2)是否存在a1,使數(shù)列{an}為等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,,是數(shù)列 的前項(xiàng)和.
(1)若數(shù)列為等差數(shù)列.
①求數(shù)列的通項(xiàng)
②若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項(xiàng)和項(xiàng)和的大。
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列是公比為正數(shù)的等比數(shù)列,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知無窮數(shù)列的前項(xiàng)和為,且滿足,其中、是常數(shù).
(1)若,,,求數(shù)列的通項(xiàng)公式;
(2)若,,,且,求數(shù)列的前項(xiàng)和
(3)試探究、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案