已知tanα,tanβ是方程x2+3x+4=0的兩根,且-<α<,-<β<,則αβ的值為(  )

A.                        B.-

C. 或-               D.-

 

【答案】

B

【解析】由韋達(dá)定理得

tanα+tanβ=-3,tanα·tanβ=4,

∴tanα<0,tanβ<0,

∴tan(αβ)=

又-<α<,-<β<,且tanα<0,tanβ<0

∴-π<αβ<0,∴αβ=-.

[點(diǎn)評(píng)] 由tanα與tanβ的和與積,先判斷tanα與tanβ的符號(hào),可進(jìn)一步限定角αβ的取值范圍

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα,tanβ是方程x2+3
3
x+4=0的兩根,α,β∈(-
π
2
π
2
)則α+β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題(1)?α∈R,使sinαcosα=1成立;(2)?α∈R,使tan(α+β)=tanα+tanβ成立;(3)?α∈R,都有tan(α+β)=
tanα+tanβ
1-tanαtanβ
成立.其中正確命題的個(gè)數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα,tanβ是一元二次方程2mx2+(4m-2)x+2m-3=0的兩個(gè)不等實(shí)根,求函數(shù)f(m)=5m2+3mtan(α+β)+4的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα、tanβ是方程x2-4x-2=0的兩個(gè)實(shí)根,求:cos2(α+β)+2sin(α+β)cos(α+β)-3sin2(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα,tanβ是方程x2+3
3
x+4=0
的兩根,且α,β∈(-
π
2
,
π
2
)
,則α+β=( 。
A、
π
3
-
3
B、-
π
3
3
C、
π
3
D、-
3

查看答案和解析>>

同步練習(xí)冊(cè)答案