為了得到函數(shù)y=2sin(
x
3
+
π
6
),x∈R
的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(  )
A、向左平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的
1
3
倍(縱坐標(biāo)不變)
B、向右平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的3倍(縱坐標(biāo)不變)
C、橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再把所得各點向左平移
π
6
個單位長度
D、橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再把所得各點向左平移
π
2
個單位長度
分析:根據(jù)圖象的平移伸縮變換的規(guī)律:圖象上各點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?
1
ω
倍時,自變量x的系數(shù)乘以ω;圖象的平移變換的規(guī)律:左加右減.是在x上加或減平移的數(shù)量.
相位由x變?yōu)?span id="6m0mmmc" class="MathJye">
x
3
+
π
6
,需要向左平移一定的單位,而不是向右,又x的系數(shù)由1變?yōu)?span id="aqmecm6" class="MathJye">
1
3
,所以要將圖象上點的橫坐標(biāo)伸長到原來的3倍.
解答:解:y=2sinx圖象上各點縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的3 倍得到函數(shù)y=2sin
x
3
的圖象
再把所得圖象所有的點向左平移
π
2
個單位長度得到y(tǒng)=2sin
1
3
(x+
π
2
)
=3sin(
x
3
+
π
6
)的圖象
故選D
點評:本題考查圖象變換的規(guī)律在自變量x乘以ω,需將函數(shù)的圖象縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?
1
ω
倍;在自變量x上加上φ>0,圖象左移φ個單位;在自變量x上減去φ>0,圖象右移φ個單位.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=2sin(
x
3
+
π
6
)
,x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點( 。
A、向左平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的
1
3
倍縱坐標(biāo)不變)
B、向右平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的
1
3
倍(縱坐標(biāo)不變)
C、向左平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)
D、向右平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=
2
sin(2x+
π
4
)
的圖象,只要把函數(shù)y=
2
sin2x
圖象上所有的點(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=2sin(
x
3
+
π
6
),x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點( 。
A、向右平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)
B、向左平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)
C、向右平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的
1
3
倍(縱坐標(biāo)不變)
D、向左平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的
1
3
倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=2sin(+),x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(    )

A.向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)

B.向右平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)

C.向左平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)

D.向右平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)

查看答案和解析>>

同步練習(xí)冊答案