1.如圖所示的“數(shù)陣”的特點(diǎn)是:毎行每列都成等差數(shù)列,則數(shù)字37在圖中出現(xiàn)的次數(shù)為9.

分析 第1行數(shù)組成的數(shù)列A1j(j=1,2,…)是以2為首項(xiàng),公差為1的等差數(shù)列,第j列數(shù)組成的數(shù)列Aij(i=1,2,…)是以j+1為首項(xiàng),公差為j的等差數(shù)列,求出通項(xiàng)公式,就求出結(jié)果

解答 解:第i行第j列的數(shù)記為Aij.那么每一組i與j的組合就是表中一個(gè)數(shù).
因?yàn)榈谝恍袛?shù)組成的數(shù)列A1j(j=1,2,…)是以2為首項(xiàng),公差為1的等差數(shù)列,
所以A1j=2+(j-1)×1=j+1,
所以第j列數(shù)組成的數(shù)列Aij(i=1,2,…)是以j+1為首項(xiàng),公差為j的等差數(shù)列,
所以Aij=(j+1)+(i-1)×j=ij+1.
令A(yù)ij=ij+1=37,
則ij=36=22×32,
∴37出現(xiàn)的次數(shù)為(2+1)(2+1)=9,
故答案為:9.

點(diǎn)評(píng) 本題考查了行列模型的等差數(shù)列應(yīng)用,解題時(shí)利用首項(xiàng)和公差寫出等差數(shù)列的通項(xiàng)公式,運(yùn)用通項(xiàng)公式求值,是中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)$f(x)=2sin(\frac{x}{3}-\frac{π}{6})$的圖象向左平移$\frac{π}{4}$個(gè)單位,再向上平移2個(gè)單位,得到函數(shù)g(x)的圖象,則g(x)的解析式為( 。
A.$g(x)=2sin(\frac{x}{3}-\frac{π}{4})-2$B.$g(x)=2sin(\frac{x}{3}+\frac{π}{4})+2$C.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})+2$D.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.我國(guó)古代名著《九章算術(shù)》中有這樣一段話:“今有金錘,長(zhǎng)五尺,斬本一尺,重四斤.?dāng)啬┮怀,重二斤.”意思是:“現(xiàn)有一根金錘,頭部的1尺,重4斤;尾部的1尺,重2斤;且從頭到尾,每一尺的重量構(gòu)成等差數(shù)列.”則下列說法錯(cuò)誤的是( 。
A.該金錘中間一尺重3斤
B.中間三尺的重量和是頭尾兩尺重量和的3倍
C.該金錘的重量為15斤
D.該金錘相鄰兩尺的重量之差的絕對(duì)值為0.5斤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為$(3\sqrt{2},\frac{π}{4})$,圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}}\right.$(α為參數(shù)).
(1)直線l過M且與圓C相切,求直線l的極坐標(biāo)方程;
(2)過點(diǎn)P(0,m)且斜率為$\sqrt{3}$的直線l'與圓C交于A,B兩點(diǎn),若|PA|•|PB|=6,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在一次實(shí)驗(yàn)中,同時(shí)拋擲4枚均勻的硬幣16次,設(shè)4枚硬幣正好出現(xiàn)3枚正面向上,1枚反面向上的次數(shù)為ξ,則ξ的方差是( 。
A.3B.4C.1D.$\frac{15}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標(biāo)系xOy中,橢圓C的方程為$\frac{x^2}{4}+{y^2}=1$,若以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線E的極坐標(biāo)方程為ρ2-8ρsinθ+15=0.
(1)求曲線E的普通方程和橢圓C的參數(shù)方程;
(2)已知A,B分別為兩曲線上的動(dòng)點(diǎn),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.用線性回歸模型求得甲、乙、丙3組不同的數(shù)據(jù)的線性相關(guān)系數(shù)分別為0.81,-0.98,0.63,其中乙(填甲、乙、丙中的一個(gè))組數(shù)據(jù)的線性相關(guān)性最強(qiáng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.曲線y=lgx在x=1處的切線斜率是( 。
A.$\frac{1}{ln10}$B.ln10C.lneD.$\frac{1}{lne}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$,g(x)=lnx+$\frac{a}{x}$(a>0).
(1)求函數(shù)f(x)的極值;
(2)若?x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案