設(shè)不同直線m、n和不同平面α、β,給出下列四個(gè)命題:

;②;

m、n異面;④

其中假命題有(    )

A.0個(gè)              B.1個(gè)              C.2個(gè)               D.3個(gè)

解析:①真,②③④假.

答案:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:
 x  3 -2  4  
2
 
3
 y -2
3
 0 -4  
2
2
-
1
2
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C1交于不同兩點(diǎn)M、N,且
OM
ON
=0
,請(qǐng)問(wèn)是否存在這樣的直線l過(guò)拋物線C2的焦點(diǎn)F?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1和拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求曲線C1,C2的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l與橢圓C1交于不同兩點(diǎn)M、N,且
OM
ON
=0,請(qǐng)問(wèn)是否存在直線l過(guò)拋物線C2的焦點(diǎn)F?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:

(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C1交于不同兩點(diǎn)M、N,且數(shù)學(xué)公式,請(qǐng)問(wèn)是否存在這樣的直線l過(guò)拋物線C2的焦點(diǎn)F?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年山東省煙臺(tái)市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:
 x 3-2 4  
 y-2 0-4 -
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C1交于不同兩點(diǎn)M、N,且,請(qǐng)問(wèn)是否存在這樣的直線l過(guò)拋物線C2的焦點(diǎn)F?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省名校領(lǐng)航高考數(shù)學(xué)預(yù)測(cè)試卷(四)(解析版) 題型:解答題

設(shè)橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:
 x 3-2 4  
 y-2 0-4 -
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C1交于不同兩點(diǎn)M、N,且,請(qǐng)問(wèn)是否存在這樣的直線l過(guò)拋物線C2的焦點(diǎn)F?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案