精英家教網 > 高中數學 > 題目詳情

【題目】已知雙曲線與橢圓有相同的焦點,實半軸長為

(1)求雙曲線的方程;

(2)若直線與雙曲線有兩個不同的交點,且(其中為原點),求的取值范圍.

【答案】(1);(2)

【解析】

試題分析:(1)根據題意,得,得,即可求解雙曲線的標準方程;(2)把直線與雙曲線的方程聯(lián)立,利用根與系數的關系,得到,再由,即可求解的取值范圍.

試題解析:(1)設曲線方程為,

,,雙曲線......................... 4分

(2)由,

,................. 7分

,則,

..........................10分

,又,,

.......................12分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】f(x)=si n-2cos2+1.

(1)f(x)的最小正周期;

(2)若函數y=f(x)y=g(x)的圖象關于直線x=1對稱求當x,y=g(x)的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列中,,點)在直線y = x上,

(Ⅰ)計算a2,a3,a4的值;

(Ⅱ)令bn=an+1﹣an﹣1,求證:數列{bn}是等比數列;

(Ⅲ)Sn、Tn分別為數列{an}、{bn}的前n項和,是否存在實數λ,使得數列為等差數列?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,點分別為線段的中點.

(1)求證:平面

(2)若在邊上,,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了迎接世博會,某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元根據經驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛為了便于結算,每輛自行車的日租金只取整數,并且要求出租自行車一日的總收入必須高于這一日的管理費用,用表示出租自行車的日凈收入即一日中出租自行車的總收入減去管理費用后的所得。

1求函數的解析式及其定義域;

2試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數據.

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數據的散點圖.

(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程.

(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤.

(參考數值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的一個焦點與短軸的兩個端點是正三角形的三個項點,點在橢圓上.

(1)求橢圓的方程;

(2)設不過原點且斜率為的直線與橢圓交于不同的兩點,線段的中點為,直線與橢圓交于,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊的一角開辟為水果園種植桃樹,已知角,的長度均大于米,現在邊界處建圍墻,在處圍竹籬笆

1若圍墻 長度為米,如何圍可使得三角形地塊的面積最大?

2已知段圍墻高米,段圍墻高米,造價均為每平方米若圍圍墻用了元,問如何圍可使竹籬笆用料最省?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線被圓所截得的弦長為8.

(1)求圓的方程;

(2)若直線與圓切于點,當直線軸正半軸,軸正半軸圍成的三角形面積最小時,求點的坐標.

查看答案和解析>>

同步練習冊答案