化簡:a2+b2-2ab-c2=
 
考點:因式分解定理
專題:函數(shù)的性質(zhì)及應用
分析:直接利用平方差法分解因式即可.
解答: 解:a2+b2-2ab-c2=(a-b)2-c2=(a-b+c)(a-b-c).
故答案為:(a-b+c)(a-b-c).
點評:本題考查因式分解定理的應用,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的公差d=3,且a3=6,則a10等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|-2<x<3},B={x|x≤1或x≥4}.若全集U=R,則A∩∁UB=( 。
A、{x|1<x≤3}
B、{x|1<x<3}
C、{x|1≤x<3}
D、{x|x≤1或x≥3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

比較下列每組中橢圓的形狀,哪一個更圓,哪一個更扁?為什么?
(1)9x2+y2=36與
x2
16
+
y2
12
=1;
(2)x2+9y2=36與
x2
6
+
y2
10
=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把拼成“success”這個單詞的各個字母作各種排列,共有多少種排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于直線l,m與平面α,β的命題中,一定正確的是(  )
A、若l∥m,m?α,則l∥α
B、若l⊥β,α⊥β,則l∥α
C、若l⊥β,α∥β,則l⊥α
D、若l?β,α⊥β,則l⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知空間中三點A(x1,y1,z1)、B(x2,y2,z2)、C(x3,y3,z3,),則A、B、C三點共線的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐G-ABCD,四邊形ABCD是長為2a的正方形,DA⊥平面ABG,且GA=GB,BH⊥平面CAG,垂足為H,且H在直線CG上.
(1)求證:平面AGD⊥平面BGC;
(2)求三棱錐D-ACG的體積;
(3)求三棱錐D-ACG的內(nèi)切球半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x2和y=x3
(1)它們的奇偶性是怎樣的?
(2)它們的圖象各有怎樣的對稱性?
(3)它們在(0,+∞)上各有怎樣的單調(diào)性?在(-∞,0)上呢?

查看答案和解析>>

同步練習冊答案