6.若拋物線y2=2px的焦點與圓x2+y2-4x=0的圓心重合,則p的值為(  )
A.-2B.2C.-4D.4

分析 將圓的方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求得圓心與半徑,由由拋物線方程y2=2px,焦點為($\frac{p}{2}$,0),可得得$\frac{p}{2}$=2,即可求得p的值.

解答 解:將圓的方程變形為(x-2)2+y2=4,可知其圓心為(2,0),
由拋物線方程y2=2px,焦點為($\frac{p}{2}$,0),
根據(jù)題意可得$\frac{p}{2}$=2,
∴p=4,
故選:D.

點評 本題考查圓的標(biāo)準(zhǔn)方程,拋物線的標(biāo)準(zhǔn)方程及焦點坐標(biāo),考查轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖所示,觀察圖形,回答下列問題:
(1)[80,90)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).
(3)估計這次環(huán)保知識競賽成績的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y=-2{sin^2}x-2\sqrt{3}sinxcosx$的最小正周期和最大值分別( 。
A.$T=2π,{y_{max}}=2\sqrt{3}$B.$T=π,{y_{max}}=2\sqrt{3}$C.T=π,ymax=3D.T=π,ymax=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出下列例題:
①若奇函數(shù)f(x)對定義域內(nèi)任意x都有f(x)=f(2-x),則函數(shù)f(x)為周期函數(shù);
②函數(shù)f(x)=(x-3)e-x的單調(diào)遞增區(qū)間為(2,+∞);
③若函數(shù)f(x)=f'($\frac{π}{4}$)cosx+sinx,則f($\frac{π}{4}$)的值為1;
④函數(shù)f(x)=2|x||log0.5x|-1的零點的個數(shù)為2,
其中真命題是①③④(將你認(rèn)為真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax3+bx2+cx在點x0處取得極小值-4,其導(dǎo)函數(shù)的圖象經(jīng)過(-1,0),(1,0),如圖所示:
(1)求x0的值;
(2)求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.以下四個命題中:
①已知圓C上一定點A和一動點B,O為坐標(biāo)原點,若$\overrightarrow{OP}=\frac{1}{2}({\overrightarrow{OA}+\overrightarrow{OB}}$),則動點P的軌跡為圓;
②設(shè)A、B為兩個定點,k為非零常數(shù),|$\overrightarrow{PA}}$|-|${\overrightarrow{PB}}$|=k,則動點P的軌跡為雙曲線;
③0<θ<$\frac{π}{4}$,則雙曲線C1:$\frac{x^2}{{{{cos}^2}θ}}-\frac{y^2}{{{{sin}^2}θ}}$=1與C2:$\frac{y^2}{{{{sin}^2}θ}}-\frac{x^2}{{{{sin}^2}θ{{tan}^2}θ}}$=1的離心率相同;
④已知兩定點F1(-1,0),F(xiàn)2(1,0)和一動點P,若|PF1|•|PF2|=a2(a≠0),則點P的軌跡關(guān)于原點對稱.
其中正確命題的序號為①③④        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.下列說法
①當(dāng)x>0且x≠1時,有l(wèi)nx+$\frac{1}{lnx}$≥2;
②△ABC中,a>b是sinA>sinB 成立的充要條件;
③函數(shù)y=3sin2x+$\sqrt{3}$cos2x的圖象可以由函數(shù)y=sinx的圖象向左平移$\frac{π}{6}$個單位得到;
④已知sn是等差數(shù)列{an}的前n項和,若S7>S5,則S9>S3.;
⑤函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對稱.
其中正確的命題的序號為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=e3x-1,則f″($\frac{1}{3}$)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知△ABC中,G是重心,三內(nèi)角A,B,C的對邊分別為a,b,c,且56a$\overrightarrow{GA}$+40b$\overrightarrow{GB}$+35c$\overrightarrow{GC}$=$\overrightarrow{0}$,則∠B=60°.

查看答案和解析>>

同步練習(xí)冊答案