9.點(diǎn)P(1,3)關(guān)于直線x+2y-2=0的對(duì)稱點(diǎn)為Q,則點(diǎn)Q的坐標(biāo)為(-1,-1).

分析 設(shè)點(diǎn)P(1,3)關(guān)于直線x+2y-2=0的對(duì)稱點(diǎn)坐標(biāo)為(a,b),則由垂直及中點(diǎn)在軸上這兩個(gè)條件,求出a、b的值,可得結(jié)論.

解答 解:設(shè)點(diǎn)P(1,3)關(guān)于直線x+2y-2=0的對(duì)稱點(diǎn)坐標(biāo)為(a,b),則由$\left\{\begin{array}{l}{\frac{b-3}{a-2}•(-\frac{1}{2})=-1}\\{\frac{a+1}{2}+2•\frac{b+3}{2}-2=0}\end{array}\right.$,
解得a=-1,b=-1,
故答案為(-1,-1).

點(diǎn)評(píng) 本題主要考查求一個(gè)點(diǎn)關(guān)于某直線的對(duì)稱點(diǎn)的坐標(biāo)的求法,利用了垂直及中點(diǎn)在軸上這兩個(gè)條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.299與621的最大公約數(shù)為23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)是(0,+∞)上的單調(diào)增函數(shù),當(dāng)n∈N+時(shí),f(n)∈N+,且f[f(n)]=3n,則f(1)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=x|x|+bx+c,給出以下四個(gè)命題:①當(dāng)c=0時(shí),有f(-x)=-f(x)成立②當(dāng)b=0,c>0時(shí),方程f(x)=0,只有一個(gè)實(shí)數(shù)根③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,c)對(duì)稱 ④當(dāng)x>0時(shí);函數(shù)f(x)=x|x|+bx+c,f(x)的最小值是c-$\frac{^{2}}{2}$.其中正確的命題的序號(hào)是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知集合A={x,$\frac{y}{x}$,1},B={x2,x+y,0},若A=B,則x2014+y2015=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}2(1-x),0≤x≤1\\ x-1,1<x≤2\end{array}$如果對(duì)任意的n∈N*,定義fn(x)=$\underbrace{f\{f[{f…f(x)}]\}}_{n個(gè)f}$,例如:f2(x)=f(f(x)),那么f2016(2)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為備戰(zhàn)某次運(yùn)動(dòng)會(huì),某市體育局組建了一個(gè)由4個(gè)男運(yùn)動(dòng)員和2個(gè)女運(yùn)動(dòng)員組成的6人代表隊(duì)并進(jìn)行備戰(zhàn)訓(xùn)練.
(1)經(jīng)過備戰(zhàn)訓(xùn)練,從6人中隨機(jī)選出2人進(jìn)行成果檢驗(yàn),求選出的2人中至少有1個(gè)女運(yùn)動(dòng)員的概率;
(2)檢驗(yàn)結(jié)束后,甲、乙兩名運(yùn)動(dòng)員的成績(jī)?nèi)缦拢?br />甲:70,68,74,71,72
乙:70,69,70,74,72
根據(jù)兩組數(shù)據(jù)完成圖示的莖葉圖,并通過計(jì)算說明哪位運(yùn)動(dòng)員的成績(jī)更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x、y、x+y成等差數(shù)列,x、y、xy成等比數(shù)列,且0<logmxy<1,則實(shí)數(shù)m的取值范圍是m>8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=ln(-x2+2x+8)的單調(diào)遞增區(qū)間是( 。
A.(-∞,1)B.(-2,1)C.(1,4)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案