已知函數(shù)ft(x)=(t-x),其中t為正常數(shù).
(Ⅰ)求函數(shù)ft(x)在(0,+∞)上的最大值;
(Ⅱ)設(shè)數(shù)列{an}滿足:a1=,3an+1=an+2,(1)求數(shù)列{an}的通項(xiàng)公式an; (2)證明:對任意的x>0,(x)(n∈N*);
(Ⅲ)證明:
【答案】分析:(Ⅰ)求導(dǎo)數(shù),確定ft(x)在區(qū)間(0,t)上單調(diào)遞增,在區(qū)間(t,+∞)上單調(diào)遞減,從而可求函數(shù)ft(x)在(0,+∞)上的最大值;
(Ⅱ)(1)證明數(shù)列{an-1}為等比數(shù)列,即可求數(shù)列{an}的通項(xiàng)公式an; 
(2)證法一:從已有性質(zhì)結(jié)論出發(fā);證法二:作差比較法,即可得到結(jié)論;
(Ⅲ)證法一:從已經(jīng)研究出的性質(zhì)出發(fā),實(shí)現(xiàn)求和結(jié)構(gòu)的放縮;證法二:應(yīng)用柯西不等式實(shí)現(xiàn)結(jié)構(gòu)放縮,即可得到結(jié)論.
解答:(Ⅰ)解:由,可得,…(2分)
所以,,,…(3分)
則ft(x)在區(qū)間(0,t)上單調(diào)遞增,在區(qū)間(t,+∞)上單調(diào)遞減,
所以,.…(4分)
(Ⅱ)(1)解:由3an+1=an+2,得,又
則數(shù)列{an-1}為等比數(shù)列,且,…(5分)
為所求通項(xiàng)公式.…(6分)
(2)證明:即證對任意的x>0,(n∈N*)…(7分)
證法一:(從已有性質(zhì)結(jié)論出發(fā))
由(Ⅰ)知…(9分)
即有對于任意的x>0恒成立.…(10分)
證法二:(作差比較法)
…(8分)
=…(9分)
即有對于任意的x>0恒成立.…(10分)
(Ⅲ)證明:證法一:(從已經(jīng)研究出的性質(zhì)出發(fā),實(shí)現(xiàn)求和結(jié)構(gòu)的放縮)
由(Ⅱ)知,對于任意的x>0都有,
于是,=
…(11分)對于任意的x>0恒成立
特別地,令,即,…(12分)
,故原不等式成立.…(14分)
證法二:(應(yīng)用柯西不等式實(shí)現(xiàn)結(jié)構(gòu)放縮)
由柯西不等式:
其中等號當(dāng)且僅當(dāng)xi=kyi(i=1,2,…n)時(shí)成立.
,可得

而由,所以
,所證不等式成立.
點(diǎn)評:本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查數(shù)列的通項(xiàng),考查數(shù)列與不等式的綜合,考查學(xué)生分析解決問題的能力,難度大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)ft(x)=(x-t)2-t(t∈R),設(shè)a<b,f(x)=
fa(x),fa(x)<fb(x)
fb(x),fa(x)≥fb(x)
,若函數(shù)f(x)+x+a-b有四個(gè)零點(diǎn),則b-a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宜賓二模)已知函數(shù)ft(x)=
1
1+x
-
1
(1+x)2
(t-x),其中t為正常數(shù).
(Ⅰ)求函數(shù)ft(x)在(0,+∞)上的最大值;
(Ⅱ)設(shè)數(shù)列{an}滿足:a1=
5
3
,3an+1=an+2,(1)求數(shù)列{an}的通項(xiàng)公式an; (2)證明:對任意的x>0,
1
an
f
2
3n
(x)(n∈N*);
(Ⅲ)證明:
1
a1
+
1
a2
+…+
1
an
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)ft(x)=
1
1+x
-
1
(1+x)2
(t-x)
,其中t為常數(shù),且t>0.
(Ⅰ)求函數(shù)ft(x)在(0,+∞)上的最大值;
(Ⅱ)數(shù)列{an}中,a1=
2
3
,an+1an=2an-an+1,求{an}的通項(xiàng)公式;
(Ⅲ)證明:對任意的x>0,anf
1
2n
(x)
,n=1,2,….

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)ft(x)=
1
1+x
-
1
(1+x)2
(t-x)
,其中t為常數(shù),且t>0.
(Ⅰ)求函數(shù)ft(x)在(0,+∞)上的最大值;
(Ⅱ)數(shù)列{an}中,a1=3,a2=5,其前n項(xiàng)和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3),且設(shè)bn=1-
1
an
,證明:對任意的x>0,bnf
1
2n
(x)
,n=1,2,….

查看答案和解析>>

同步練習(xí)冊答案