2.在銳角△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,已知$\frac{sinB}{sinA+sinC}$=$\frac{c+b-a}{c+b}$
(1)求角C.
(2)求函數(shù)f(A)=$\frac{-2cos2A}{1+tanA}$+1的最大值.

分析 (1)根據(jù)正弦定理和余弦定理求出C的值即可;(2)整理f(A),根據(jù)A的范圍,求出f(A)的最大值即可.

解答 解:(1)由$\frac{sinB}{sinA+sinC}$=$\frac{c+b-a}{c+b}$,
由正弦定理得:$\frac{a+c}$=$\frac{c+b-a}{c+b}$,化簡即為a2+b2-c2=ab,
再由余弦定理可得cosC=$\frac{{a}^{2}{+c}^{2}{-c}^{2}}{2ab}$=$\frac{1}{2}$,
因?yàn)?<C<π,所以∠C=$\frac{π}{3}$;
(2)f(A)=1-2cos2A+2sinAcosA=$\sqrt{2}$sin(2A-$\frac{π}{4}$),
在銳角△ABC中,$\frac{π}{6}$<A<$\frac{π}{2}$,
$\frac{π}{12}$<2A-$\frac{π}{4}$<$\frac{3π}{4}$,
故當(dāng)2A-$\frac{π}{4}$=$\frac{π}{2}$,A=$\frac{3π}{8}$時(shí),
f(A)max=$\sqrt{2}$.

點(diǎn)評 本題考查了三角函數(shù)的性質(zhì),考查正弦定理和余弦定理的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕的成本為50元,然后以每個(gè)100元的價(jià)格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個(gè)生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.

(1)若蛋糕店一天制作17個(gè)生日蛋糕,
①求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:個(gè),n∈N)的函數(shù)解析式;
②在當(dāng)天的利潤不低于750元的條件下,求當(dāng)天需求量不低于18個(gè)的概率.
(2)若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請你以蛋糕店一天利潤的期望值為決定依據(jù),判斷應(yīng)該制作16個(gè)是17個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖是水平放置的△ABC按“斜二測畫法”得到的直觀圖,其中B′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,那么△ABC的面積是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{2}}{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在銳角△ABC中,sinA=$\frac{2\sqrt{6}}{5}$,cosC=$\frac{5}{7}$,BC=7,若動(dòng)點(diǎn)P滿足$\overrightarrow{AP}$=$\frac{λ}{2}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),則點(diǎn)P軌跡與直線AB,AC所圍成的封閉區(qū)域的面積(  )
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給定函數(shù)(1)y=$\frac{1}{{\sqrt{x}}}$;(2)y=$\frac{5x+2}{x-1}$;(3)y=-|2x+1|;(4)y=2x2+2x-$\frac{3}{2}$其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是(1),(2),(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓A:x2+(y+3)2=100,圓A內(nèi)一定點(diǎn)B(0,3),圓P過B且與圓A內(nèi)切,如圖所示,求圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.集合A={-1,0,2},B={2,3,4},則A∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列各組函數(shù)中,表示同一函數(shù)的是(  )
A.y=1,y=$\frac{x}{x}$B.y=$\frac{{x}^{2}-x}{x}$與y=x-1C.y=x,y=$\root{3}{{x}^{3}}$D.y=|x|,y=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在三棱臺(tái)ABC-A1B1C1中,截去三棱錐A1-ABC,則剩余部分是( 。
A.三棱錐B.四棱錐C.三棱柱D.五棱錐

查看答案和解析>>

同步練習(xí)冊答案