19.對(duì)于任意實(shí)數(shù)m,直線mx-y+1-3m=0必經(jīng)過的定點(diǎn)坐標(biāo)是( 。
A.(3,1)B.(1,3)C.$(\frac{1}{m},-3m)$D.無法確定

分析 直線mx-y+1-3m=0化為:m(x-3)+(1-y)=0,令$\left\{\begin{array}{l}{x-3=0}\\{1-y=0}\end{array}\right.$,解出即可得出定點(diǎn)坐標(biāo).

解答 解:直線mx-y+1-3m=0化為:m(x-3)+(1-y)=0,
令$\left\{\begin{array}{l}{x-3=0}\\{1-y=0}\end{array}\right.$,解得x=3,y=1.
∴直線恒過定點(diǎn)(3,1).
故選A.

點(diǎn)評(píng) 本題考查了直線系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線2x+y-2=0在x軸上的截距為(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}是等差數(shù)列,a3=5,a7=13,數(shù)列{bn}前n項(xiàng)和為Sn,且滿足Sn=2bn-1(n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,AB=BC,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)F在線段AA1上,當(dāng)AF=a或2a時(shí),CF⊥平面B1DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.直線l1與l2的斜率分別是方程6x2+x-1=0的兩根,則直線l1與l2的夾角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|1≤x≤2},B={x|x≤a},若A⊆B,則a的取值范圍是( 。
A.{a|a≥2}B.{a|a>2}C.{a|a≥1}D.{a|a≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),f(x)>0.
(1)求證:f(x)是奇函數(shù);
(2)若f(1)=$\frac{1}{2}$,試求f(x)在區(qū)間[-2,6]上的最值;
(3)是否存在m,使f(2log2x)2-4)+f(4m-2(log2x))>0對(duì)于任意x∈[1,2]恒成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$f(x)=\frac{{p{x^2}+8}}{3x+q}$是奇函數(shù),且$\frac{5}{2}<f(2)<3,p∈Z$,
(1)求實(shí)數(shù)p,q的值;
(2)判斷函數(shù)f(x)在(-∞,-2)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.從2名女生和5名男生中任選3人參加演講比賽.設(shè)隨機(jī)變量ξ表示所選3人中女生的人數(shù).
(1)求“所選3人中女生人數(shù)ξ≤1”的概率;
(2)求ξ的分布列;
(3)求ξ的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案