【題目】二次函數(shù)和(,)的值域分別為和,命題,命題,則下列命題中真命題的是( )
A.B.C.D.
【答案】D
【解析】
根據(jù)兩個(gè)二次函數(shù)最高次項(xiàng)系數(shù)的正負(fù)性可以通過舉例說明命題的真假,
根據(jù)兩個(gè)二次函數(shù)最高次項(xiàng)系數(shù)的正負(fù)性進(jìn)行分類討論,可以判斷出命題的真假,最后根據(jù)且命題、或命題的真假判斷方法選出正確答案.
(1)當(dāng),時(shí), 二次函數(shù)的值域?yàn)椋?/span>,
二次函數(shù)的值域?yàn)椋?/span>,此時(shí)顯然
是假命題,而是負(fù)的, 是正的,故命題是假命題, 命題是真命題;
(2)當(dāng),時(shí), 二次函數(shù)的值域?yàn)椋?/span>,
二次函數(shù)的值域?yàn)椋?/span>,此時(shí)
、 是同號(hào),故命題是真命題;
(3)當(dāng),時(shí), 二次函數(shù)的值域?yàn)椋?/span>,
二次函數(shù)的值域?yàn)椋?/span>,此時(shí)
、 是同號(hào),故命題是真命題;
(4)當(dāng),時(shí), 二次函數(shù)的值域?yàn)椋?/span>,
二次函數(shù)的值域?yàn)椋?/span>,此時(shí)
是正數(shù)、 是負(fù)數(shù),故命題是真命題;
綜上所述:是假命題, 是真命題.
選項(xiàng)A: 因?yàn)?/span>是假命題, 是真命題,是假命題;
選項(xiàng)B: 因?yàn)?/span>是假命題, 是真命題,所以是假命題,因此是假命題;
選項(xiàng)C: 因?yàn)?/span>是假命題, 是真命題,所以是真命題,是假命題,因此是假命題;
選項(xiàng)D: 因?yàn)?/span>是假命題, 是真命題,所以是真命題, 是真命題.
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植基地將編號(hào)分別為1,2,3,4,5,6的六個(gè)不同品種的馬鈴薯種在如圖所示的
A | B | C | D | E | F |
這六塊實(shí)驗(yàn)田上進(jìn)行對(duì)比試驗(yàn),要求這六塊實(shí)驗(yàn)田分別種植不同品種的馬鈴薯,若種植時(shí)要求編號(hào)1,3,5的三個(gè)品種的馬鈴薯中至少有兩個(gè)相鄰,且2號(hào)品種的馬鈴薯不能種植在A、F這兩塊實(shí)驗(yàn)田上,則不同的種植方法有 ( )
A. 360種 B. 432種 C. 456種 D. 480種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy,在x軸的正半軸上,依次取點(diǎn),,,,并在第一象限內(nèi)的拋物線上依次取點(diǎn),,,,,使得都為等邊三角形,其中為坐標(biāo)原點(diǎn),設(shè)第n個(gè)三角形的邊長為.
⑴求,,并猜想不要求證明);
⑵令,記為數(shù)列中落在區(qū)間內(nèi)的項(xiàng)的個(gè)數(shù),設(shè)數(shù)列的前m項(xiàng)和為,試問是否存在實(shí)數(shù),使得對(duì)任意恒成立?若存在,求出的取值范圍;若不存在,說明理由;
⑶已知數(shù)列滿足:,數(shù)列滿足:,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),離心率等于,該橢圓的一個(gè)長軸端點(diǎn)恰好是拋物線的焦點(diǎn).
(1)求橢圓的方程;
(2)已知直線與橢圓的兩個(gè)交點(diǎn)記為、,其中點(diǎn)在第一象限,點(diǎn)、是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).當(dāng)、運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx﹣xcosx﹣x,f'(x)為f(x)的導(dǎo)數(shù).
(1)求曲線在點(diǎn)A(0,f(0))處的切線方程;
(2)設(shè),求在區(qū)間[0,π]上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,已知G與E分別為和的中點(diǎn),D和F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若,則線段DF的長度的平方取值范圍為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二十四節(jié)氣是中國古代的一種指導(dǎo)農(nóng)事的補(bǔ)充歷法,是我國勞動(dòng)人民長期經(jīng)驗(yàn)的積累成果和智慧的結(jié)晶,被譽(yù)為“中國的第五大發(fā)明”.由于二十四節(jié)氣對(duì)古時(shí)候農(nóng)事的進(jìn)行起著非常重要的指導(dǎo)作用,所以勞動(dòng)人民編寫了很多記憶節(jié)氣的歌謠:春雨驚春清谷天,夏滿芒夏暑相連,秋處露秋寒霜降,冬雪雪冬小大寒.《易經(jīng)》里對(duì)二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實(shí)測得到的,其他節(jié)氣的晷影是按照等差數(shù)列的規(guī)律計(jì)算出來的,在下表中,冬至的晷影最長為130.0寸,夏至的晷影最短為14.8寸,那么《易經(jīng)》中所記錄的清明的晷影長應(yīng)為( )
A.77.2寸B.72.4寸C.67.3寸D.62.8寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求的取值范圍;
(3)在(2)的條件下,設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com