8.已知m∈R,復(fù)數(shù)z=$\frac{m(m-2)}{m-1}$+(m2+2m-3)i,當(dāng)m為何值時:(1)z∈R?(2)z是純虛數(shù)?

分析 (1)由z∈R,得$\left\{\begin{array}{l}{{m}^{2}+2m-3=0}\\{m-1≠0}\end{array}\right.$,求解即可得答案;
(2)由z是純虛數(shù),得$\left\{\begin{array}{l}{\frac{m(m-2)}{m-1}=0}\\{{m}^{2}+2m-3≠0}\end{array}\right.$,求解即可得答案.

解答 解:(1)由z∈R,得$\left\{\begin{array}{l}{{m}^{2}+2m-3=0}\\{m-1≠0}\end{array}\right.$,解得m=-3;
(2)∵z是純虛數(shù),
∴$\left\{\begin{array}{l}{\frac{m(m-2)}{m-1}=0}\\{{m}^{2}+2m-3≠0}\end{array}\right.$,解得m=0或m=2.

點評 本題考查復(fù)數(shù)的基本概念,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線的頂點為原點,焦點為F(1,0),過焦點的直線與拋物線交于A,B兩點,過AB的中點M作準(zhǔn)線的垂線與拋物線交于點P,若|AB|=6,則點P的坐標(biāo)為($\frac{1}{2}$,$±\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,輸出的T的值是( 。
A.47B.48C.49D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列點不在直線$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))上的是(  )
A.(-1,2)B.(2,-1)C.(3,-2)D.(-3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點M的直角坐標(biāo)為(-3,-3,3),則它的柱坐標(biāo)為( 。
A.$(3\sqrt{2},\frac{π}{4},3)$B.$(3\sqrt{2},\frac{3π}{4},1)$C.$(3\sqrt{2},\frac{5π}{4},3)$D.$(3\sqrt{2},\frac{7π}{4},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\vec a=({1,3}),\vec b=({2,5})$,則$\vec a$+$\vec b$=( 。
A.(-1,-2)B.(3,8)C.(5,5)D.(-3,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$|{\vec a}|=3,|{\vec b}|=4,\vec a•\vec b=-6\sqrt{3}$.求:
(Ⅰ)$\vec a與\vec b$的夾角θ;
(Ⅱ)$|{\vec a+\vec b}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)列{an}滿足a1=1,a2=2,2an+1=an+an+2,若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,則數(shù)列{bn}的前5項和等于( 。
A.1B.$\frac{5}{6}$C.$\frac{1}{6}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知等差數(shù)列{an}的首項為a1,公差為d,前n項和為Sn,且a11=-26,a51=54,求an和S20的值.

查看答案和解析>>

同步練習(xí)冊答案