在平面直角坐標系xOy中,經過點(0,
2
)
且斜率為k的直線l與橢圓
x2
2
+y2=1
有兩個不同的交點P和Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)設橢圓與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數(shù)k,使得向量
OP
+
OQ
AB
共線?如果存在,求k值;如果不存在,請說明理由.
(Ⅰ)由已知條件,直線l的方程為y=kx+
2
,
代入橢圓方程得
x2
2
+(kx+
2
)2=1

整理得(
1
2
+k2)x2+2
2
kx+1=0

直線l與橢圓有兩個不同的交點P和Q等價于△=8k2-4(
1
2
+k2)=4k2-2>0

解得k<-
2
2
k>
2
2
.即k的取值范圍為(-∞,-
2
2
)∪(
2
2
,+∞)

(Ⅱ)設P(x1,y1),Q(x2,y2),則
OP
+
OQ
=(x1+x2,y1+y2)
,
由方程①,x1+x2=-
4
2
k
1+2k2
. ②
y1+y2=k(x1+x2)+2
2
. ③
A(
2
,0),B(0,1),
AB
=(-
2
,1)

所以
OP
+
OQ
AB
共線等價于x1+x2=-
2
(y1+y2)
,
將②③代入上式,解得k=
2
2

由(Ⅰ)知k<-
2
2
k>
2
2
,
故沒有符合題意的常數(shù)k.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,雙曲線中心在原點,焦點在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標原點為極點,x軸的正半軸為極軸建立相應的極坐標系.在此極坐標系中,若圓C的極坐標方程為ρ=4cosθ,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程) 在平面直角坐標系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
 (參數(shù)θ∈[0,2π)),若以原點為極點,射線ox為極軸建立極坐標系,則圓C的圓心的極坐標為
 
,圓C的極坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣東)在平面直角坐標系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A、B兩點,則弦AB的長等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.
(Ⅰ)若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步練習冊答案