等邊三角形的邊長(zhǎng)為3,點(diǎn)、分別是邊、上的點(diǎn),且滿(mǎn)足(如圖1).將△沿折起到△的位置,使二面角成直二面角,連結(jié)、 (如圖2).
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使直線與平面所成的角為?若存在,求出的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
(1)詳見(jiàn)解析;(2)存在,且.
解析試題分析:(1)這是一個(gè)證明題,先用利用余弦定理在求出的長(zhǎng)度,結(jié)合勾股定理證明,從而在折疊后對(duì)應(yīng)地有,然后利用平面平面,結(jié)合平面與平面垂直的性質(zhì)定理證明平面;(2)方法1是利用(1)中的提示條件說(shuō)明平面,
然后再過(guò)點(diǎn)作,便可以得到平面,從而為直線與平面所成的角,進(jìn)而圍繞的長(zhǎng)度進(jìn)行計(jì)算;方法2是利用空間向量法,先假設(shè)點(diǎn)的坐標(biāo),利用(1)中的提示條件說(shuō)明平面,將視為平面的一個(gè)法向量,然后利用確定點(diǎn)的坐標(biāo),進(jìn)而計(jì)算的長(zhǎng)度.
試題解析:證明:(1)因?yàn)榈冗叀?img src="http://thumb.zyjl.cn/pic5/tikupic/ee/b/qzygq1.png" style="vertical-align:middle;" />的邊長(zhǎng)為3,且,
所以,.
在△中,,
由余弦定理得.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/22/e/ilyak1.png" style="vertical-align:middle;" />,所以.
折疊后有. 2分
因?yàn)槎娼?img src="http://thumb.zyjl.cn/pic5/tikupic/58/d/yuuao.png" style="vertical-align:middle;" />是直二面角,所以平面平面. 3分
又平面平面,平面,,
所以平面. 4分
(2)解法1:假設(shè)在線段上存在點(diǎn),使直線與平面所成的角為.
如圖,作于點(diǎn),連結(jié)、. 5分
由(1)有平面,而平面,
所以. 6分
又
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形均為全等的直角梯形,且,.
(Ⅰ)求證:平面;
(Ⅱ)設(shè),求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 點(diǎn).
(I)求證:平面PBD丄平面PAC;
(Ⅱ)求三棱錐D-ABP和三棱錐B-PCD的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在直角梯形中,,,,
. 把沿對(duì)角線折起到的位置,如圖2所示,使得點(diǎn)在平面上的正投影恰好落在線段上,連接,點(diǎn)分別為線段的中點(diǎn).
(I)求證:平面平面;
(II)求直線與平面所成角的正弦值;
(III)在棱上是否存在一點(diǎn),使得到點(diǎn)四點(diǎn)的距離相等?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在各棱長(zhǎng)均為的三棱柱中,側(cè)面底面,.
(1)求側(cè)棱與平面所成角的正弦值的大小;
(2)已知點(diǎn)滿(mǎn)足,在直線上是否存在點(diǎn),使?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在五面體中,四邊形是正方形,平面∥
(1)求異面直線與所成角的余弦值;
(2)證明:平面;
(3)求二面角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形是正方形,⊥平面,∥,、、分別為、、的中點(diǎn),且.
(1)求證:平面⊥平面;
(2)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,菱形的邊長(zhǎng)為6,,.將菱形沿對(duì)角線折起,得到三棱錐 ,點(diǎn)是棱的中點(diǎn),.
(1)求證:;
(2)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com