分別用輾轉(zhuǎn)相除法和更相減損術(shù)求282與470的最大公約數(shù).
考點(diǎn):用輾轉(zhuǎn)相除計算最大公約數(shù)
專題:算法和程序框圖
分析:分別利用輾轉(zhuǎn)相除法和更相減損術(shù)即可得出.
解答: 解:輾轉(zhuǎn)相除法:
470=1×282+188,
282=1×188+94,
188=2×94,
∴282與470的最大公約數(shù)為94.
更相減損術(shù):
470與28(2分)別除以2得235和141.
∴235-141=94,
141-94=47,
94-47=47,
∴470與282的最大公約數(shù)為47×2=94.
點(diǎn)評:本題考查了輾轉(zhuǎn)相除法和更相減損術(shù),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-4lnx-
1
2
ax2+x,其中a∈R.
(Ⅰ)若a=-
1
2
,求函數(shù)f(x)的最小值;
(Ⅱ)設(shè)函數(shù)g(x)=-
1
3
x3+
1
2
(a+2)x2+2(a+4)x,存在兩個整數(shù)m、n,使得函數(shù)f(x),g(x)在區(qū)間(m,n)上都是增函數(shù),求n的最大值,及n取最大值時a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某數(shù)學(xué)老師對本校2013屆高三學(xué)生的高考數(shù)學(xué)成績按1:200進(jìn)行分層抽樣抽取了20名學(xué)生的成績,并用莖葉圖記錄分?jǐn)?shù)如圖所示,但部分?jǐn)?shù)據(jù)不小心丟失,同時得到如下所示的頻率分布表:
分?jǐn)?shù)段(分)[50,70)[70,90)[90,110)[110,130)[130,150)總計
頻數(shù)b
頻率a0.25
(1)求表中a,b的值及分?jǐn)?shù)在[90,100)范圍內(nèi)的學(xué)生人數(shù),并估計這次考試全校學(xué)生數(shù)學(xué)成績的及格率(分?jǐn)?shù)在[90,150)內(nèi)為及格):
(2)從成績在[100,120)范圍內(nèi)的學(xué)生中隨機(jī)選2人,求其中恰一人成績在[100,110)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)f(x)=
ln(x+2)+2
x
,g(x)=
m
x+2

(Ⅰ)若m=3
3
,求函數(shù)y=g(x)圖象上任意一點(diǎn)P到坐標(biāo)原點(diǎn)的距離的最小值;
(Ⅱ)是否存在最大的正整數(shù)m,使得對任意的正數(shù)k,都存在實數(shù)a,b滿足-2<a<b<k,有f(k)=f(a)=f(b),如果存在,求出最大的正整數(shù)m;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax,a∈R.
(1)若x=1是函數(shù)f(x)的一個極值點(diǎn),求a的值.
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若不等式f(x)+a<0在x∈(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=plnx+
q
x2
(p>0),若x=
2
2
時,f(x)有極小值
1
2
(1-ln2),
(1)求實數(shù)p,q的取值;
(2)若數(shù)列{an}中,an=f(n),求證:數(shù)列{an}的前n項和Sn
n
4
;
(3)設(shè)函數(shù)g(x)=alnx+bx+c(a>0),若g(x)有極值且極值為t,則t與
4ac-b2
4a
是否具有確定的大小關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x+y=1,x2+y2=2,求x7+y7的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(3
3x
+1)n的展開式中各項系數(shù)之和為A,各項的二項式系數(shù)之和為B,如A+B=272,則展開式中含x項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線C:y2=4
2
x的焦點(diǎn),P為C上一點(diǎn),若|PF|=4
2
,則△POF的面積為
 

查看答案和解析>>

同步練習(xí)冊答案