(2012•湖北模擬)已知l是直線,α、β是兩個(gè)不同的平面,命題p:l∥α,l⊥β,則α⊥β;命題q:α⊥β,l⊥β則l∥α;命題r:α⊥β,l∥α,則l⊥β,則下列命題中,真命題是( 。
分析:先判斷命題p、q、r的真假,然后再利用“或”、“且”、“非”的真假法則判斷即可.
解答:解:①命題p:l∥α,l⊥β,則α⊥β.正確.下面給出證明:
如圖所示:過直線l作平面γ∩α=m,∵l∥α,∴l(xiāng)∥m.
∵l⊥β,∴m⊥β,
由m?α,∴α⊥β.故命題p正確.
②命題q:α⊥β,l⊥β則l∥α;如圖2,可能l?α,故命題q是假命題.
③命題r:α⊥β,l∥α,則l⊥β.如圖3,直線l可能與平面β平行、在平面β內(nèi)或相交,故命題r是假命題.
綜上可知:p真,q假,r假.
故p∧q假,qVr假,pVq真,¬p假.
故真命題是C.
故選C.
點(diǎn)評(píng):正確判斷命題p、q、r的真假和理解“或”、“且”、“非”的真假判斷法則是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上有一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為3+2
2
3-2
2

(1)求橢圓的方程;
(2)如果直線x=t(t∈R)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線BD的交點(diǎn)K必在一條確定的雙曲線上;
(3)過點(diǎn)Q(1,0)作直線l(與x軸不垂直)與橢圓交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若
RM
MQ
RN
NQ
,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)在△ABC中,M是BC的中點(diǎn),AM=3,點(diǎn)P在AM上,且滿足
AP
=2
PM
,則
PA
•(
PB
+
PC
)
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)已知函數(shù)y=g(x)的圖象由f(x)=sin2x的圖象向右平移φ(0<φ<π)個(gè)單位得到,這兩個(gè)函數(shù)的部分圖象如圖所示,則φ=
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,若S1,2S2,3S3成等差數(shù)列,則公比q等于
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為正常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
(1)求a的值;
(2)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍;
(3)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

同步練習(xí)冊(cè)答案